|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from functools import partial |
|
import math |
|
from itertools import repeat |
|
import collections.abc |
|
from typing import Tuple, Union |
|
from monai.networks.blocks import PatchEmbed, UnetOutBlock, UnetrBasicBlock, UnetrUpBlock, UnetrPrUpBlock |
|
from monai.networks.blocks.dynunet_block import get_conv_layer |
|
|
|
|
|
def _ntuple(n): |
|
def parse(x): |
|
if isinstance(x, collections.abc.Iterable): |
|
return x |
|
return tuple(repeat(x, n)) |
|
return parse |
|
|
|
to_1tuple = _ntuple(1) |
|
to_2tuple = _ntuple(2) |
|
to_3tuple = _ntuple(3) |
|
to_4tuple = _ntuple(4) |
|
to_ntuple = _ntuple |
|
|
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): |
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2. |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
print("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
"The distribution of values may be incorrect.", |
|
stacklevel=2) |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
return tensor |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.dwconv = DWConv(hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x, H, W): |
|
x = self.fc1(x) |
|
x = self.dwconv(x, H, W) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1): |
|
super().__init__() |
|
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." |
|
|
|
self.dim = dim |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.q = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
self.sr_ratio = sr_ratio |
|
if sr_ratio > 1: |
|
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) |
|
self.norm = nn.LayerNorm(dim) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x, H, W): |
|
B, N, C = x.shape |
|
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
|
|
if self.sr_ratio > 1: |
|
x_ = x.permute(0, 2, 1).reshape(B, C, H, W) |
|
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1) |
|
x_ = self.norm(x_) |
|
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
else: |
|
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
k, v = kv[0], kv[1] |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
|
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) |
|
|
|
|
|
self.drop_path = nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x, H, W): |
|
x = x + self.drop_path(self.attn(self.norm1(x), H, W)) |
|
x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) |
|
|
|
return x |
|
|
|
|
|
class OverlapPatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
|
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] |
|
self.num_patches = self.H * self.W |
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride, |
|
padding=(patch_size[0] // 2, patch_size[1] // 2)) |
|
self.norm = nn.LayerNorm(embed_dim) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
|
|
_, _, H, W = x.shape |
|
x = x.flatten(2).transpose(1, 2) |
|
|
|
x = self.norm(x) |
|
|
|
|
|
return x, H, W |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MixVisionTransformer(nn.Module): |
|
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dims=[64, 128, 256, 512], |
|
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., |
|
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, |
|
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]): |
|
super().__init__() |
|
|
|
self.depths = depths |
|
|
|
|
|
self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_chans=in_chans, |
|
embed_dim=embed_dims[0]) |
|
self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0], |
|
embed_dim=embed_dims[1]) |
|
self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1], |
|
embed_dim=embed_dims[2]) |
|
self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2], |
|
embed_dim=embed_dims[3]) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
cur = 0 |
|
self.block1 = nn.ModuleList([Block( |
|
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, |
|
sr_ratio=sr_ratios[0]) |
|
for i in range(depths[0])]) |
|
self.norm1 = norm_layer(embed_dims[0]) |
|
|
|
cur += depths[0] |
|
self.block2 = nn.ModuleList([Block( |
|
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, |
|
sr_ratio=sr_ratios[1]) |
|
for i in range(depths[1])]) |
|
self.norm2 = norm_layer(embed_dims[1]) |
|
|
|
cur += depths[1] |
|
self.block3 = nn.ModuleList([Block( |
|
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, |
|
sr_ratio=sr_ratios[2]) |
|
for i in range(depths[2])]) |
|
self.norm3 = norm_layer(embed_dims[2]) |
|
|
|
cur += depths[2] |
|
self.block4 = nn.ModuleList([Block( |
|
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, |
|
sr_ratio=sr_ratios[3]) |
|
for i in range(depths[3])]) |
|
self.norm4 = norm_layer(embed_dims[3]) |
|
|
|
|
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def init_weights(self, pretrained=None): |
|
if isinstance(pretrained, str): |
|
|
|
|
|
|
|
torch.load(pretrained, map_location='cpu') |
|
|
|
def reset_drop_path(self, drop_path_rate): |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))] |
|
cur = 0 |
|
for i in range(self.depths[0]): |
|
self.block1[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
cur += self.depths[0] |
|
for i in range(self.depths[1]): |
|
self.block2[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
cur += self.depths[1] |
|
for i in range(self.depths[2]): |
|
self.block3[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
cur += self.depths[2] |
|
for i in range(self.depths[3]): |
|
self.block4[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
def freeze_patch_emb(self): |
|
self.patch_embed1.requires_grad = False |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} |
|
|
|
def get_classifier(self): |
|
return self.head |
|
|
|
|
|
|
|
|
|
|
|
def forward_features(self, x): |
|
B = x.shape[0] |
|
outs = [] |
|
|
|
|
|
x, H, W = self.patch_embed1(x) |
|
for i, blk in enumerate(self.block1): |
|
x = blk(x, H, W) |
|
x = self.norm1(x) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() |
|
outs.append(x) |
|
|
|
|
|
x, H, W = self.patch_embed2(x) |
|
for i, blk in enumerate(self.block2): |
|
x = blk(x, H, W) |
|
x = self.norm2(x) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() |
|
outs.append(x) |
|
|
|
|
|
x, H, W = self.patch_embed3(x) |
|
for i, blk in enumerate(self.block3): |
|
x = blk(x, H, W) |
|
x = self.norm3(x) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() |
|
outs.append(x) |
|
|
|
|
|
x, H, W = self.patch_embed4(x) |
|
for i, blk in enumerate(self.block4): |
|
x = blk(x, H, W) |
|
x = self.norm4(x) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() |
|
outs.append(x) |
|
|
|
return outs |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
|
|
|
|
return x |
|
|
|
|
|
class DWConv(nn.Module): |
|
def __init__(self, dim=768): |
|
super(DWConv, self).__init__() |
|
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) |
|
|
|
def forward(self, x, H, W): |
|
B, N, C = x.shape |
|
x = x.transpose(1, 2).view(B, C, H, W) |
|
x = self.dwconv(x) |
|
x = x.flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
|
|
|
|
class mit_b0(MixVisionTransformer): |
|
def __init__(self, **kwargs): |
|
super(mit_b0, self).__init__( |
|
patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], |
|
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1) |
|
|
|
|
|
|
|
class mit_b1(MixVisionTransformer): |
|
def __init__(self, **kwargs): |
|
super(mit_b1, self).__init__( |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], |
|
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1) |
|
|
|
|
|
class mit_b2(MixVisionTransformer): |
|
def __init__(self, **kwargs): |
|
super(mit_b2, self).__init__( |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], |
|
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1) |
|
|
|
|
|
|
|
class mit_b3(MixVisionTransformer): |
|
def __init__(self, **kwargs): |
|
super(mit_b3, self).__init__( |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], |
|
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1) |
|
|
|
|
|
|
|
class mit_b4(MixVisionTransformer): |
|
def __init__(self, **kwargs): |
|
super(mit_b4, self).__init__( |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], |
|
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1) |
|
|
|
|
|
|
|
class mit_b5(MixVisionTransformer): |
|
def __init__(self, **kwargs): |
|
super(mit_b5, self).__init__( |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], |
|
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1) |
|
|
|
|
|
|
|
class MiT_B2_UNet_MultiHead(nn.Module): |
|
def __init__(self, |
|
in_channels: int, |
|
out_channels: int, |
|
regress_class: int = 1, |
|
img_size: Tuple[int, int] = (256,256), |
|
|
|
feature_size: int = 16, |
|
spatial_dims: int = 2, |
|
|
|
|
|
num_heads = [1, 2, 4, 8], |
|
|
|
norm_name: Union[Tuple, str] = "instance", |
|
conv_block: bool = False, |
|
res_block: bool = True, |
|
dropout_rate: float = 0.0, |
|
debug: bool = False |
|
): |
|
super().__init__() |
|
self.debug = debug |
|
self.mit_b3 = MixVisionTransformer(img_size=img_size, patch_size=4, embed_dims=[feature_size*2, feature_size*4, feature_size*8, feature_size*16], |
|
num_heads=num_heads, mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], drop_rate=0.0, drop_path_rate=0.1) |
|
|
|
self.encoder1 = UnetrBasicBlock( |
|
spatial_dims=spatial_dims, |
|
in_channels=in_channels, |
|
out_channels=feature_size, |
|
kernel_size=3, |
|
stride=1, |
|
norm_name=norm_name, |
|
res_block=True, |
|
) |
|
|
|
self.encoder2 = UnetrBasicBlock( |
|
spatial_dims=spatial_dims, |
|
in_channels=2 * feature_size, |
|
out_channels=2 * feature_size, |
|
kernel_size=3, |
|
stride=1, |
|
norm_name=norm_name, |
|
res_block=True, |
|
) |
|
|
|
self.encoder3 = UnetrBasicBlock( |
|
spatial_dims=spatial_dims, |
|
in_channels=4 * feature_size, |
|
out_channels=4 * feature_size, |
|
kernel_size=3, |
|
stride=1, |
|
norm_name=norm_name, |
|
res_block=True, |
|
) |
|
|
|
self.encoder4 = UnetrBasicBlock( |
|
spatial_dims=spatial_dims, |
|
in_channels=8 * feature_size, |
|
out_channels=8 * feature_size, |
|
kernel_size=3, |
|
stride=1, |
|
norm_name=norm_name, |
|
res_block=True, |
|
) |
|
|
|
self.encoder5 = UnetrBasicBlock( |
|
spatial_dims=spatial_dims, |
|
in_channels=16 * feature_size, |
|
out_channels=16 * feature_size, |
|
kernel_size=3, |
|
stride=1, |
|
norm_name=norm_name, |
|
res_block=True, |
|
) |
|
|
|
self.decoder4 = UnetrUpBlock( |
|
spatial_dims=2, |
|
in_channels=feature_size * 16, |
|
out_channels=feature_size * 8, |
|
kernel_size=3, |
|
upsample_kernel_size=2, |
|
norm_name=norm_name, |
|
res_block=res_block, |
|
) |
|
self.decoder3 = UnetrUpBlock( |
|
spatial_dims=2, |
|
in_channels=feature_size * 8, |
|
out_channels=feature_size * 4, |
|
kernel_size=3, |
|
upsample_kernel_size=2, |
|
norm_name=norm_name, |
|
res_block=res_block, |
|
) |
|
self.decoder2 = UnetrUpBlock( |
|
spatial_dims=2, |
|
in_channels=feature_size * 4, |
|
out_channels=feature_size * 2, |
|
kernel_size=3, |
|
upsample_kernel_size=2, |
|
norm_name=norm_name, |
|
res_block=res_block, |
|
) |
|
|
|
self.transp_conv = get_conv_layer( |
|
spatial_dims=2, |
|
in_channels=feature_size*2, |
|
out_channels=feature_size*2, |
|
kernel_size=3, |
|
stride=2, |
|
conv_only=True, |
|
is_transposed=True, |
|
) |
|
self.decoder1 = UnetrUpBlock( |
|
spatial_dims=2, |
|
in_channels=feature_size * 2, |
|
out_channels=feature_size, |
|
kernel_size=3, |
|
upsample_kernel_size=2, |
|
norm_name=norm_name, |
|
res_block=res_block, |
|
) |
|
|
|
self.out_interior = UnetOutBlock(spatial_dims=2, in_channels=feature_size, out_channels=out_channels) |
|
self.out_dist = UnetOutBlock(spatial_dims=2, in_channels=feature_size, out_channels=1) |
|
|
|
def forward(self, x_in): |
|
hidden_states_out = self.mit_b3(x_in) |
|
enc1 = self.encoder1(x_in) |
|
x1 = hidden_states_out[0] |
|
enc2 = self.encoder2(x1) |
|
x2 = hidden_states_out[1] |
|
enc3 = self.encoder3(x2) |
|
x3 = hidden_states_out[2] |
|
enc4 = self.encoder4(x3) |
|
x4 = hidden_states_out[3] |
|
enc5 = self.encoder5(x4) |
|
|
|
|
|
dec4 = self.decoder4(enc5, enc4) |
|
dec3 = self.decoder3(dec4, enc3) |
|
dec2 = self.decoder2(dec3, enc2) |
|
dec2_up = self.transp_conv(dec2) |
|
dec1 = self.decoder1(dec2_up, enc1) |
|
logits = self.out_interior(dec1) |
|
dist = self.out_dist(dec1) |
|
|
|
if self.debug: |
|
return hidden_states_out, enc1, enc2, enc3, enc4, dec4, dec3, dec2, dec1, logits |
|
else: |
|
return logits, dist |
|
|
|
|
|
|
|
img_size = 256 |
|
in_chans = 3 |
|
B = 2 |
|
input_img = torch.randn((B,in_chans,img_size,img_size)) |
|
|
|
b2 = MiT_B2_UNet_MultiHead(3, 3, img_size=img_size) |
|
logits, dist = b2(input_img) |
|
|
|
|
|
|
|
class MiT_B3_UNet_MultiHead(nn.Module): |
|
def __init__(self, |
|
in_channels: int, |
|
out_channels: int, |
|
regress_class: int = 1, |
|
img_size: Tuple[int, int] = (256,256), |
|
|
|
feature_size: int = 16, |
|
spatial_dims: int = 2, |
|
|
|
|
|
num_heads = [1, 2, 4, 8], |
|
|
|
norm_name: Union[Tuple, str] = "instance", |
|
conv_block: bool = False, |
|
res_block: bool = True, |
|
dropout_rate: float = 0.0, |
|
debug: bool = False |
|
): |
|
super().__init__() |
|
self.debug = debug |
|
self.mit_b3 = MixVisionTransformer(img_size=img_size, patch_size=4, embed_dims=[feature_size*2, feature_size*4, feature_size*8, feature_size*16], |
|
num_heads=num_heads, mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1) |
|
|
|
self.encoder1 = UnetrBasicBlock( |
|
spatial_dims=spatial_dims, |
|
in_channels=in_channels, |
|
out_channels=feature_size, |
|
kernel_size=3, |
|
stride=1, |
|
norm_name=norm_name, |
|
res_block=True, |
|
) |
|
|
|
self.encoder2 = UnetrBasicBlock( |
|
spatial_dims=spatial_dims, |
|
in_channels=2 * feature_size, |
|
out_channels=2 * feature_size, |
|
kernel_size=3, |
|
stride=1, |
|
norm_name=norm_name, |
|
res_block=True, |
|
) |
|
|
|
self.encoder3 = UnetrBasicBlock( |
|
spatial_dims=spatial_dims, |
|
in_channels=4 * feature_size, |
|
out_channels=4 * feature_size, |
|
kernel_size=3, |
|
stride=1, |
|
norm_name=norm_name, |
|
res_block=True, |
|
) |
|
|
|
self.encoder4 = UnetrBasicBlock( |
|
spatial_dims=spatial_dims, |
|
in_channels=8 * feature_size, |
|
out_channels=8 * feature_size, |
|
kernel_size=3, |
|
stride=1, |
|
norm_name=norm_name, |
|
res_block=True, |
|
) |
|
|
|
self.encoder5 = UnetrBasicBlock( |
|
spatial_dims=spatial_dims, |
|
in_channels=16 * feature_size, |
|
out_channels=16 * feature_size, |
|
kernel_size=3, |
|
stride=1, |
|
norm_name=norm_name, |
|
res_block=True, |
|
) |
|
|
|
self.decoder4 = UnetrUpBlock( |
|
spatial_dims=2, |
|
in_channels=feature_size * 16, |
|
out_channels=feature_size * 8, |
|
kernel_size=3, |
|
upsample_kernel_size=2, |
|
norm_name=norm_name, |
|
res_block=res_block, |
|
) |
|
self.decoder3 = UnetrUpBlock( |
|
spatial_dims=2, |
|
in_channels=feature_size * 8, |
|
out_channels=feature_size * 4, |
|
kernel_size=3, |
|
upsample_kernel_size=2, |
|
norm_name=norm_name, |
|
res_block=res_block, |
|
) |
|
self.decoder2 = UnetrUpBlock( |
|
spatial_dims=2, |
|
in_channels=feature_size * 4, |
|
out_channels=feature_size * 2, |
|
kernel_size=3, |
|
upsample_kernel_size=2, |
|
norm_name=norm_name, |
|
res_block=res_block, |
|
) |
|
|
|
self.transp_conv = get_conv_layer( |
|
spatial_dims=2, |
|
in_channels=feature_size*2, |
|
out_channels=feature_size*2, |
|
kernel_size=3, |
|
stride=2, |
|
conv_only=True, |
|
is_transposed=True, |
|
) |
|
self.decoder1 = UnetrUpBlock( |
|
spatial_dims=2, |
|
in_channels=feature_size * 2, |
|
out_channels=feature_size, |
|
kernel_size=3, |
|
upsample_kernel_size=2, |
|
norm_name=norm_name, |
|
res_block=res_block, |
|
) |
|
|
|
self.out_interior = UnetOutBlock(spatial_dims=2, in_channels=feature_size, out_channels=out_channels) |
|
self.out_dist = UnetOutBlock(spatial_dims=2, in_channels=feature_size, out_channels=1) |
|
|
|
def forward(self, x_in): |
|
hidden_states_out = self.mit_b3(x_in) |
|
enc1 = self.encoder1(x_in) |
|
x1 = hidden_states_out[0] |
|
enc2 = self.encoder2(x1) |
|
x2 = hidden_states_out[1] |
|
enc3 = self.encoder3(x2) |
|
x3 = hidden_states_out[2] |
|
enc4 = self.encoder4(x3) |
|
x4 = hidden_states_out[3] |
|
enc5 = self.encoder5(x4) |
|
|
|
|
|
dec4 = self.decoder4(enc5, enc4) |
|
dec3 = self.decoder3(dec4, enc3) |
|
dec2 = self.decoder2(dec3, enc2) |
|
dec2_up = self.transp_conv(dec2) |
|
dec1 = self.decoder1(dec2_up, enc1) |
|
logits = self.out_interior(dec1) |
|
dist = self.out_dist(dec1) |
|
|
|
if self.debug: |
|
return hidden_states_out, enc1, enc2, enc3, enc4, dec4, dec3, dec2, dec1, logits |
|
else: |
|
return logits, dist |
|
|
|
|
|
|
|
|
|
|
|
|
|
class MLPEmbedding(nn.Module): |
|
""" |
|
Linear Embedding |
|
used in head |
|
""" |
|
def __init__(self, input_dim=2048, embed_dim=768): |
|
super().__init__() |
|
self.proj = nn.Linear(input_dim, embed_dim) |
|
|
|
def forward(self, x): |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.proj(x) |
|
return x |
|
|
|
class All_MLP_Head(nn.Module): |
|
""" |
|
All MLP head in segformer |
|
Simple and Efficient Design for Semantic Segmentation with Transformers |
|
""" |
|
def __init__(self, in_channels=[64,128,320,512], |
|
in_index=[0,1,2,3], |
|
feature_strides=[4,8,16,32], |
|
dropout_ratio=0.1, |
|
num_classes=3, |
|
embedding_dim=768, |
|
output_hidden_states=False): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
assert len(feature_strides) == len(self.in_channels) |
|
assert min(feature_strides) == feature_strides[0] |
|
self.in_index = in_index |
|
self.feature_strides = feature_strides |
|
self.dropout_ratio = dropout_ratio |
|
self.num_classes = num_classes |
|
self.output_hidden_states = output_hidden_states |
|
|
|
c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels |
|
|
|
|
|
self.linear_c4 = MLPEmbedding(input_dim=c4_in_channels, embed_dim=embedding_dim) |
|
self.linear_c3 = MLPEmbedding(input_dim=c3_in_channels, embed_dim=embedding_dim) |
|
self.linear_c2 = MLPEmbedding(input_dim=c2_in_channels, embed_dim=embedding_dim) |
|
self.linear_c1 = MLPEmbedding(input_dim=c1_in_channels, embed_dim=embedding_dim) |
|
|
|
self.linear_fuse = nn.Conv2d(in_channels=embedding_dim*4, out_channels=embedding_dim, kernel_size=1,bias=False) |
|
self.batch_norm = nn.BatchNorm2d(embedding_dim) |
|
self.activation = nn.ReLU() |
|
if dropout_ratio>0: |
|
self.dropout = nn.Dropout2d(self.dropout_ratio) |
|
self.linear_pred = nn.Conv2d(embedding_dim, self.num_classes, kernel_size=1) |
|
|
|
def forward(self, inputs): |
|
|
|
c1, c2, c3, c4 = inputs |
|
|
|
|
|
n, _, h, w = c4.shape |
|
|
|
_c4 = self.linear_c4(c4).permute(0,2,1).reshape(n, -1, c4.shape[2], c4.shape[3]) |
|
_c4 = nn.functional.interpolate(_c4, size=c1.size()[2:], mode='bilinear',align_corners=False) |
|
|
|
_c3 = self.linear_c3(c3).permute(0,2,1).reshape(n, -1, c3.shape[2], c3.shape[3]) |
|
_c3 = nn.functional.interpolate(_c3, size=c1.size()[2:], mode='bilinear',align_corners=False) |
|
|
|
_c2 = self.linear_c2(c2).permute(0,2,1).reshape(n, -1, c2.shape[2], c2.shape[3]) |
|
_c2 = nn.functional.interpolate(_c2, size=c1.size()[2:], mode='bilinear',align_corners=False) |
|
|
|
_c1 = self.linear_c1(c1).permute(0,2,1).reshape(n, -1, c1.shape[2], c1.shape[3]) |
|
|
|
|
|
hidden_states = self.linear_fuse(torch.cat([_c4, _c3, _c2, _c1], dim=1)) |
|
hidden_states = self.batch_norm(hidden_states) |
|
hidden_states = self.activation(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
x = self.linear_pred(hidden_states) |
|
if self.output_hidden_states: |
|
return x, hidden_states |
|
else: |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|