Spaces:
Runtime error
Runtime error
Commit
·
da9b562
1
Parent(s):
4902206
final fine tuned
Browse files
README.md
CHANGED
@@ -14,6 +14,7 @@ pinned: false
|
|
14 |
<ol>
|
15 |
<li>Milestone 1: Setup Instructions</li>
|
16 |
<li>Milestone 2: Hugging Face Space: <a href="https://huggingface.co/spaces/junming-qiu/toxic-tweets-milestone-2">Hugging Face Milestone 2 Demo</a></li>
|
|
|
17 |
</ol>
|
18 |
|
19 |
<h1>Motivation</h1>
|
|
|
14 |
<ol>
|
15 |
<li>Milestone 1: Setup Instructions</li>
|
16 |
<li>Milestone 2: Hugging Face Space: <a href="https://huggingface.co/spaces/junming-qiu/toxic-tweets-milestone-2">Hugging Face Milestone 2 Demo</a></li>
|
17 |
+
<li>Milestone 3: Fine Tuned Toxic Comment model: <a href="https://huggingface.co/spaces/junming-qiu/toxic-tweets-milestone-2">Hugging Face Milestone 3 Demo</a></li>
|
18 |
</ol>
|
19 |
|
20 |
<h1>Motivation</h1>
|
app.py
CHANGED
@@ -1,18 +1,17 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
-
from transformers import BertTokenizer, BertForSequenceClassification
|
5 |
from huggingface_hub.inference_api import InferenceApi
|
6 |
import os
|
7 |
|
8 |
-
models = ["cardiffnlp/twitter-xlm-roberta-base-sentiment", "nlptown/bert-base-multilingual-uncased-sentiment", "Tatyana/rubert-base-cased-sentiment-new"
|
9 |
|
10 |
|
11 |
|
12 |
st.title('Sentiment Analysis Demo')
|
13 |
with st.form("form"):
|
14 |
selection = st.selectbox('Select Transformer:', models)
|
15 |
-
text = st.text_input('Enter text: ', "I
|
16 |
submitted = st.form_submit_button('Submit')
|
17 |
|
18 |
if submitted:
|
@@ -20,11 +19,26 @@ with st.form("form"):
|
|
20 |
|
21 |
if model_name == "junming-qiu/BertToxicClassifier":
|
22 |
API_TOKEN=os.environ['API-KEY']
|
|
|
23 |
inference = InferenceApi(repo_id=model_name, token=API_TOKEN)
|
24 |
predictions = inference(inputs=text)[0]
|
25 |
predictions = sorted(predictions, key=lambda x: x['score'], reverse=True)
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
else:
|
29 |
|
30 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
4 |
from huggingface_hub.inference_api import InferenceApi
|
5 |
import os
|
6 |
|
7 |
+
models = ["junming-qiu/BertToxicClassifier", "cardiffnlp/twitter-xlm-roberta-base-sentiment", "nlptown/bert-base-multilingual-uncased-sentiment", "Tatyana/rubert-base-cased-sentiment-new"]
|
8 |
|
9 |
|
10 |
|
11 |
st.title('Sentiment Analysis Demo')
|
12 |
with st.form("form"):
|
13 |
selection = st.selectbox('Select Transformer:', models)
|
14 |
+
text = st.text_input('Enter text: ', "I hate people who walk")
|
15 |
submitted = st.form_submit_button('Submit')
|
16 |
|
17 |
if submitted:
|
|
|
19 |
|
20 |
if model_name == "junming-qiu/BertToxicClassifier":
|
21 |
API_TOKEN=os.environ['API-KEY']
|
22 |
+
|
23 |
inference = InferenceApi(repo_id=model_name, token=API_TOKEN)
|
24 |
predictions = inference(inputs=text)[0]
|
25 |
predictions = sorted(predictions, key=lambda x: x['score'], reverse=True)
|
26 |
+
|
27 |
+
hide_table_row_index = """
|
28 |
+
<style>
|
29 |
+
thead tr th:first-child {display:none}
|
30 |
+
tbody th {display:none}
|
31 |
+
</style>
|
32 |
+
"""
|
33 |
+
|
34 |
+
st.markdown(hide_table_row_index, unsafe_allow_html=True)
|
35 |
+
|
36 |
+
output = [
|
37 |
+
{"tweet": text,
|
38 |
+
"label": predictions[0]['label'],
|
39 |
+
"score" : predictions[0]['score']},
|
40 |
+
]
|
41 |
+
st.table(output)
|
42 |
else:
|
43 |
|
44 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|