File size: 24,949 Bytes
e78b889
 
 
 
 
 
 
 
 
3afb4b6
ac1c5af
e78b889
 
 
1a06ab4
e78b889
ac1c5af
e78b889
 
1a06ab4
e78b889
 
 
 
 
282e7e5
 
 
 
 
 
1a06ab4
 
3afb4b6
e78b889
 
3afb4b6
 
 
 
 
 
 
5f040af
3afb4b6
e78b889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac1c5af
 
e78b889
 
 
 
 
ac1c5af
e78b889
 
 
 
 
 
 
ac1c5af
e78b889
 
 
ac1c5af
e78b889
 
 
 
 
 
 
 
ac1c5af
e78b889
 
 
ac1c5af
e78b889
 
 
ac1c5af
e78b889
 
 
 
ac1c5af
e78b889
 
 
ac1c5af
e78b889
 
1a06ab4
e78b889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f040af
e78b889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64dfeeb
e78b889
 
 
 
 
 
 
 
64dfeeb
e78b889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64dfeeb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import ast
import re
import io
import os
import json
import copy
import shutil
import base64
import random
import requests
import gradio as gr
from datetime import datetime
from modelscope.pipelines import pipeline
from modelscope import snapshot_download
from modelscope.utils.constant import Tasks
from PIL import Image, ImageDraw, ImageFont

from PCAgent.api import inference_chat
from PCAgent.icon_localization import det
from PCAgent.text_localization_old import ocr
from PCAgent.prompt_qwen import get_subtask_prompt as get_subtask_prompt
from PCAgent.chat import init_action_chat, init_memory_chat, add_response
from PCAgent.prompt_qwen import get_action_prompt, get_process_prompt, get_memory_prompt
from PCAgent.merge_strategy import merge_boxes_and_texts, merge_all_icon_boxes, merge_boxes_and_texts_new

vl_model_version = os.getenv('vl_model_version')
llm_model_version = os.getenv('llm_model_version')
API_url = os.getenv('API_url')
token = os.getenv('token')
# os.environ["OCR_ACCESS_KEY_ID"] = os.getenv('OCR_ACCESS_KEY_ID')
# os.environ["OCR_ACCESS_KEY_SECRET"] = os.getenv('OCR_ACCESS_KEY_SECRET')
ocr_detection = pipeline(Tasks.ocr_detection, model='damo/cv_resnet18_ocr-detection-line-level_damo')
ocr_recognition = pipeline(Tasks.ocr_recognition, model='damo/cv_convnextTiny_ocr-recognition-document_damo')
tff_file = os.environ.get('tff_file')
radius = 100

def download_file(url, save_path):
    response = requests.get(url, stream=True)  # 以流的方式下载
    response.raise_for_status()  # 确保请求成功
    with open(save_path, 'wb') as file:
        for chunk in response.iter_content(chunk_size=8192):  # 分块写入,防止占用过多内存
            file.write(chunk)

download_file(tff_file, "arial.ttf")

chatbot_css = """
<style>
.chat-container {
    display: flex;
    flex-direction: column;
    overflow-y: auto;
    max-height: 800px;
    margin: 10px;
}
.user-message, .bot-message {
    margin: 5px;
    padding: 10px;
    border-radius: 10px;
}
.user-message {
    text-align: right;
    background-color: #7B68EE;
    color: white;
    align-self: flex-end;
}
.bot-message {
    text-align: left;
    background-color: #ADD8E6;
    color: black;
    align-self: flex-start;
}
.user-image {
    text-align: right;
    align-self: flex-end;
    max-width: 150px;
    max-height: 300px;
}
.bot-image {
    text-align: left;
    align-self: flex-start;
    max-width: 200px;
    max-height: 400px;
}
</style>
"""

def cmyk_to_rgb(c, m, y, k):
    r = 255 * (1.0 - c / 255) * (1.0 - k / 255)
    g = 255 * (1.0 - m / 255) * (1.0 - k / 255)
    b = 255 * (1.0 - y / 255) * (1.0 - k / 255)
    return int(r), int(g), int(b)

def draw_coordinates_boxes_on_image(image_path, coordinates, output_image_path, font_path, no_text=0):
    image = Image.open(image_path)
    width, height = image.size
    draw = ImageDraw.Draw(image)
    total_boxes = len(coordinates)
    colors = [(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for _ in
              range(total_boxes)]

    for i, coord in enumerate(coordinates):
        c, m, y, k = colors[i]
        color = cmyk_to_rgb(c, m, y, k)

        draw.rectangle(coord, outline=color, width=int(height * 0.0025))
        
        if no_text != 1:
            font = ImageFont.truetype(font_path, int(height * 0.012))
            text_x = coord[0] + int(height * 0.0025)
            text_y = max(0, coord[1] - int(height * 0.013))
            draw.text((text_x, text_y), str(i + 1), fill=color, font=font)
    image = image.convert('RGB')

    if os.path.exists(output_image_path):
        os.remove(output_image_path)
    image.save(output_image_path)

def get_perception_infos(screenshot_file, screenshot_som_file, font_path):
    
    total_width, total_height = Image.open(screenshot_file).size

    # no partition
    img_list = [screenshot_file]
    img_x_list = [0]
    img_y_list = [0]

    coordinates = []
    texts = []
    padding = total_height * 0.0025  # 10

    for i, img in enumerate(img_list):
        width, height = Image.open(img).size
        sub_text, sub_coordinates = ocr(img, ocr_detection, ocr_recognition) # for api
        for coordinate in sub_coordinates:
            coordinate[0] = int(max(0, img_x_list[i] + coordinate[0] - padding))
            coordinate[2] = int(min(total_width, img_x_list[i] + coordinate[2] + padding))
            coordinate[1] = int(max(0, img_y_list[i] + coordinate[1] - padding))
            coordinate[3] = int(min(total_height,img_y_list[i] + coordinate[3] + padding))

        sub_text_merge, sub_coordinates_merge = merge_boxes_and_texts_new(sub_text, sub_coordinates)
        coordinates.extend(sub_coordinates_merge)
        texts.extend(sub_text_merge)
    merged_text, merged_text_coordinates = merge_boxes_and_texts(texts, coordinates)

    filtered_merged_text = []
    filtered_merged_text_coordinates = []
    for i in range(len(merged_text)):
        filtered_merged_text.append(merged_text[i])
        filtered_merged_text_coordinates.append(merged_text_coordinates[i])
    merged_text, merged_text_coordinates = filtered_merged_text, filtered_merged_text_coordinates

    coordinates = []
    for i, img in enumerate(img_list):
        width, height = Image.open(img).size
        sub_coordinates = det(img, "icon", groundingdino_model)
        for coordinate in sub_coordinates:
            coordinate[0] = int(max(0, img_x_list[i] + coordinate[0] - padding))
            coordinate[2] = int(min(total_width, img_x_list[i] + coordinate[2] + padding))
            coordinate[1] = int(max(0, img_y_list[i] + coordinate[1] - padding))
            coordinate[3] = int(min(total_height, img_y_list[i] + coordinate[3] + padding))

        sub_coordinates = merge_all_icon_boxes(sub_coordinates)
        coordinates.extend(sub_coordinates)
    merged_icon_coordinates = merge_all_icon_boxes(coordinates)
    
    rec_list = merged_text_coordinates + merged_icon_coordinates
    draw_coordinates_boxes_on_image(screenshot_file, copy.deepcopy(rec_list), screenshot_som_file, font_path)

    mark_number = 0
    perception_infos = []

    for i in range(len(merged_text_coordinates)):
        mark_number += 1
        perception_info = {"text": "mark number: " + str(mark_number) + " text: " + merged_text[i], "coordinates": merged_text_coordinates[i]}
        perception_infos.append(perception_info)

    for i in range(len(merged_icon_coordinates)):
        mark_number += 1
        perception_info = {"text": "mark number: " + str(mark_number) + " icon", "coordinates": merged_icon_coordinates[i]}
        perception_infos.append(perception_info)

    for i in range(len(perception_infos)):
        perception_infos[i]['coordinates'] = [int((perception_infos[i]['coordinates'][0]+perception_infos[i]['coordinates'][2])/2), int((perception_infos[i]['coordinates'][1]+perception_infos[i]['coordinates'][3])/2)]

    return perception_infos, total_width, total_height

groundingdino_dir = snapshot_download('AI-ModelScope/GroundingDINO', revision='v1.0.0')
groundingdino_model = pipeline('grounding-dino-task', model=groundingdino_dir)

def analyze_string(s):
    result = {
        'type': None,
        'format_keys': [],
        'dict_content': None
    }

    format_pattern = re.compile(r'\{(\w+)\}')

    #  {'key': 'value'}
    dict_pattern = re.compile(
        r'\{(?:\s*[\'\"]\w+[\'\"]\s*:\s*[\'\"][^{}\'\"]+[\'\"]\s*,?)*\}'
    )

    dict_matches = dict_pattern.findall(s)
    dicts = []
    for match in dict_matches:
        try:
            parsed_dict = ast.literal_eval(match)
            if isinstance(parsed_dict, dict):
                dicts.append(parsed_dict)
        except (ValueError, SyntaxError):
            continue

    has_dict = len(dicts) > 0

    s_without_dicts = dict_pattern.sub('', s)

    format_keys = format_pattern.findall(s_without_dicts)
    has_format = len(format_keys) > 0

    has_format_and_dict = has_format and has_dict

    if has_format_and_dict:
        result['type'] = 4
    elif has_format:
        result['type'] = 2
    elif has_dict:
        result['type'] = 3
    else:
        result['type'] = 1

    if has_format:
        result['format_keys'] = format_keys

    if has_dict:
        result['dict_content'] = dicts[0]

    return result

import re

def is_good_string(s):
    # Regex to match the dictionary-like part {'key1': 'value1', ...}
    dict_pattern = r"\{('[^']+' *: *'[^']+' *(, *'[^']+' *: *'[^']+')*)?\}"
    # Regex to match the item list part {item1, item2,...} with no single quotes in items
    item_pattern = r"\{([a-zA-Z0-9_]+( *, *[a-zA-Z0-9_]+)*)?\}"
    
    # Find all parts of the string contained within braces
    parts = re.findall(r'\{.*?\}', s)
    
    for part in parts:
        # Check if the part matches either the dictionary pattern or item pattern
        if not re.fullmatch(dict_pattern, part) and not re.fullmatch(item_pattern, part):
            return False
    return True

screenshot_root = "screenshot"
if os.path.exists(screenshot_root):
    shutil.rmtree(screenshot_root)
os.mkdir(screenshot_root)

def image_to_base64(image):
    buffered = io.BytesIO()
    image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    img_html = f'<img src="data:image/png;base64,{img_str}" />'
    return img_html

def chatbot(image, instruction, add_info, history, chat_log):
    if history == {}:
        output_for_save = []
        thought_history = []
        summary_history = []
        action_history = []
        summary = ""
        action = ""
        completed_requirements = ""
        memory = ""
        insight = ""
        error_flag = False
        user_msg = "<div class='user-message'>{}</div>".format(instruction)
        step_idx = 0
    else:
        output_for_save = history["output_for_save"]
        thought_history = history["thought_history"]
        summary_history = history["summary_history"]
        action_history = history["action_history"]
        summary = history["summary"]
        action = history["action"]
        completed_requirements = history["completed_requirements"]
        memory = history["memory"][0]
        insight = history["insight"]
        error_flag = history["error_flag"]
        user_msg = "<div class='user-message'>{}</div>".format("I have uploaded the screenshot. Please continue operating.")
        step_idx = history["history"]
    
    current_time = datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
    temp_file = f"temp_{current_time}"
    os.mkdir(temp_file)
    
    screenshot_file = os.path.join(screenshot_root, f"screenshot_{current_time}.png")
    image.save(screenshot_file, format="PNG")
    screenshot_som_file = screenshot_file.split(".")[0] + "_som." + screenshot_file.split(".")[1]
    perception_infos, width, height = get_perception_infos(screenshot_file, screenshot_som_file, font_path="arial.ttf")
    shutil.rmtree(temp_file)
    os.mkdir(temp_file)
    
    output_for_save_this_step = {}
    prompt_action = get_action_prompt(instruction, perception_infos, width, height, thought_history, summary_history, action_history, [], summary, action, "", add_info, error_flag, completed_requirements, memory)
    chat_action = init_action_chat()
    chat_action = add_response("user", prompt_action, chat_action, [screenshot_som_file])
    output_action = inference_chat(chat_action, vl_model_version, API_url, token)
    output_for_save_this_step['action'] = output_action
    action_json = json.loads(output_action.split('```json')[-1].split('```')[0])
    thought = action_json['Thought']
    summary = action_json['Summary']
    action = action_json['Action']
    chat_action = add_response("assistant", output_action, chat_action)
    
    if "Double TapIdx" in action:
        bot_response = "Please double click (click x 2) the red circle and upload the current screenshot again."
        idx = action.split("(")[-1].split(")")[0]
        coordinate = perception_infos[idx]['coordinates']
        x, y = int(coordinate[0]), int(coordinate[1])
        draw = ImageDraw.Draw(image)
        draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20)

    elif "Double Tap" in action:
        bot_response = "Please double click (click x 2) the red circle and upload the current screenshot again."
        coordinate = action.split("(")[-1].split(")")[0].split(", ")
        x, y = int(coordinate[0]), int(coordinate[1])
        draw = ImageDraw.Draw(image)
        draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20)

    elif "Triple TapIdx" in action:
        bot_response = "Please triple click (click x 3) the red circle and upload the current screenshot again."
        coordinate = action.split("(")[-1].split(")")[0].split(", ")
        x, y = int(coordinate[0]), int(coordinate[1])
        draw = ImageDraw.Draw(image)
        draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20)

    elif "Triple Tap" in action:
        bot_response = "Please triple click (click x 3) the red circle and upload the current screenshot again."
        idx = action.split("(")[-1].split(")")[0]
        coordinate = perception_infos[idx]['coordinates']
        x, y = int(coordinate[0]), int(coordinate[1])
        draw = ImageDraw.Draw(image)
        draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20)

    elif "TapIdx" in action:
        bot_response = "Please click (click x 1) the red circle and upload the current screenshot again."
        idx = action.split("(")[-1].split(")")[0]
        coordinate = perception_infos[idx]['coordinates']
        x, y = int(coordinate[0]), int(coordinate[1])
        draw = ImageDraw.Draw(image)
        draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20)

    elif "Tap" in action:
        bot_response = "Please click (click x 1) the red circle and upload the current screenshot again."
        coordinate = action.split("(")[-1].split(")")[0].split(", ")
        x, y = int(coordinate[0]), int(coordinate[1])
        draw = ImageDraw.Draw(image)
        draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20)

    elif "Shortcut" in action:
        keys = action.split("(")[-1].split(")")[0].split(", ")
        key1, key2 = keys[0].lower(), keys[1].lower()
        bot_response = f"Please press {key1}+{key2} and upload the current screenshot again."

    elif "Press" in action:
        key = action.split("(")[-1].split(")")[0]
        bot_response = f"Please press {key} and upload the current screenshot again."

    elif "Open App" in action:
        app = action.split("(")[-1].split(")")[0]
        bot_response = f"Please open {app} app and upload the current screenshot again."

    elif "Type" in action:
        coordinate = action.split("(")[1].split(")")[0].split(", ")
        x, y = int(coordinate[0]), int(coordinate[1])
        if "[text]" not in action:
            # for claude
            if '[' not in action or ']' not in action:
                # text = action.split('),')[-1].strip()
                text = action.split('),')[-1].strip().split("(")[1].split(")")[0].replace("text: ", '').replace("'", "")
            else:
                text = action.split("[")[-1].split("]")[0]
        else:
            text = action.split(" \"")[-1].split("\"")[0]
        draw = ImageDraw.Draw(image)
        draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20)
        bot_response = f"Please type \"{text}\" in the red circle and upload the current screenshot again."

    elif "Select (" in action:
        content = action.split("(")[1].split(")")[0]
        bot_response = f"Please select the text content \"{content}\" and upload the current screenshot again."
    
    elif "Replace (" in action:
        coordinate = action.split("(")[1].split(")")[0].split(", ")
        x, y = int(coordinate[0]), int(coordinate[1])
        if "[text]" not in action:
            # for claude
            if '[' not in action or ']' not in action:
                # text = action.split('),')[-1].strip()
                text = action.split('),')[-1].strip().split("(")[1].split(")")[0].replace("text: ", '')
            else:
                if "] with " in action:
                    text = action.split("] with ")[-1]
                    text = text.replace("\"", '').replace("'", '').strip('.')
                else:
                    text = action.split("[")[-1].split("]")[0]
        else:
            text = action.split(" \"")[-1].split("\"")[0]
        draw = ImageDraw.Draw(image)
        draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20)
        bot_response = f"Please replace the text in the red circle by \"{text}\" and upload the current screenshot again."

    elif "Append (" in action:
        coordinate = action.split("(")[1].split(")")[0].split(", ")
        x, y = int(coordinate[0]), int(coordinate[1])
        if "[text]" not in action:
            if '[' not in action or ']' not in action:
                text = action.split('),')[-1].strip()
            else:
                text = action.split("[")[-1].split("]")[0]
        else:
            text = action.split(" \"")[-1].split("\"")[0]
        draw = ImageDraw.Draw(image)
        draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20)
        bot_response = f"Please insert the text \"{text}\" in the red circle and upload the current screenshot again."

    elif "Stop" in action:
        output_for_save.append(output_for_save_this_step)
        bot_response = f"Answer: {output_for_save}, task completed"
        
    prompt_memory = get_memory_prompt(insight)
    chat_action = add_response("user", prompt_memory, chat_action)
    output_memory = inference_chat(chat_action, vl_model_version, API_url, token)
    chat_action = add_response("assistant", output_memory, chat_action)
    output_memory = output_memory.split("### Important content ###")[-1].split("\n\n")[0].strip() + "\n"
    if "None" not in output_memory and output_memory not in memory:
        memory += output_memory
    
    bot_text1 = "<div class='bot-message'>{}</div>".format("### Decision ###")
    bot_thought = "<div class='bot-message'>{}</div>".format("Thought: " + thought)
    bot_action = "<div class='bot-message'>{}</div>".format("Action: " + action)
    bot_operation = "<div class='bot-message'>{}</div>".format("Operation: " + summary)
    bot_text2 = "<div class='bot-message'>{}</div>".format("### Memory ###")
    if len(memory) > 0:
        bot_memory = "<div class='bot-message'>{}</div>".format(memory)
    else:
        bot_memory = "<div class='bot-message'>{}</div>".format("None")
    bot_response = "<div class='bot-message'>{}</div>".format(bot_response)
    if image is not None:
        bot_img_html = image_to_base64(image)
        bot_response = "<div class='bot-image'>{}</div>".format(bot_img_html) + bot_response

    chat_log.append(user_msg)

    shutil.rmtree(temp_file)
    # os.remove(screenshot_file)
    # os.remove(screenshot_som_file)

    thought_history.append(thought)
    summary_history.append(summary)
    action_history.append(action)

    prompt_planning = get_process_prompt(instruction, thought_history, summary_history, action_history, completed_requirements, add_info)
    chat_planning = init_memory_chat()
    chat_planning = add_response("user", prompt_planning, chat_planning )
    output_planning = inference_chat(chat_planning, llm_model_version, API_url, token)
    output_for_save_this_step['planning'] = output_planning
    chat_planning = add_response("assistant", output_planning, chat_planning )
    completed_requirements = output_planning.split("### Completed contents ###")[-1].replace("\n", " ").strip()
    
    bot_text3 = "<div class='bot-message'>{}</div>".format("### Planning ###")
    output_planning = "<div class='bot-message'>{}</div>".format(output_planning)

    history["thought_history"] = thought_history
    history["summary_history"] = summary_history
    history["action_history"] = action_history
    history["summary"] = summary
    history["action"] = action
    history["memory"] = memory,
    history["memory_switch"] = True,
    history["insight"] = insight
    history["error_flag"] = error_flag
    history["completed_requirements"] = completed_requirements
    history["output_for_save"] = output_for_save
    history["history"] = step_idx + 1
    
    chat_log.append(bot_text3)
    chat_log.append(output_planning)
    chat_log.append(bot_text1)
    chat_log.append(bot_thought)
    chat_log.append(bot_action)
    chat_log.append(bot_operation)
    chat_log.append(bot_text2)
    chat_log.append(bot_memory)
    chat_log.append(bot_response)

    chat_html = "<div class='chat-container'>{}</div>".format("".join(chat_log))

    return chatbot_css + chat_html, history, chat_log


def lock_input(instruction):
    return gr.update(value=instruction, interactive=False), gr.update(value=None)


def reset_demo():
    return gr.update(value="", interactive=True), gr.update(value=None, interactive=True), "<div class='chat-container'></div>", {}, []


tos_markdown = ("""<div style="display:flex; gap: 0.25rem;" align="center">
    <a href='https://github.com/X-PLUG/MobileAgent'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
    <a href="https://arxiv.org/abs/2502.14282"><img src="https://img.shields.io/badge/Arxiv-2502.14282-red"></a>
    <a href='https://github.com/X-PLUG/MobileAgent/stargazers'><img src='https://img.shields.io/github/stars/X-PLUG/MobileAgent.svg?style=social'></a>
</div>
If you like our project, please give us a star ✨ on Github for latest update.

**Terms of use**
1. Input your instruction in \"Instruction\", for example \"Turn on the dark mode\".
2. You can input helpful operation knowledge in \"Knowledge\".
3. Click \"Submit\" to get the operation. You need to operate your PC according to the operation and then upload the screenshot after your operation.
4. We show two examples below, each with three screenshots. Click and submit from top to bottom to experience it.

**使用说明**
1. 在“Instruction”中输入你的指令,例如“打开深色模式”。
2. 你可以在“Knowledge”中输入帮助性的操作知识。
3. 点击“Submit”来获得操作。你需要根据输出来操作PC,并且上传操作后的截图。
4. 我们在下方展示了两个例子,每个例子有三张截屏。请从上到下依次点击并提交来体验。""")

title_markdowm = ("""# PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC""")

instruction_input = gr.Textbox(label="Instruction", placeholder="Input your instruction")
knowledge_input = gr.Textbox(label="Knowledge", placeholder="Input your knowledge")
image_input = gr.Image(label="Screenshot", type="pil", height=350, width=700)
with gr.Blocks() as demo:
    history_state = gr.State(value={})
    history_output = gr.State(value=[])
    with gr.Row():
        gr.Markdown(title_markdowm)
    with gr.Row():
        with gr.Column(scale=5):
            gr.Markdown(tos_markdown)
            image_input.render()
            gr.Examples(examples=[
                ["./example/1-1.jpg", "Search for Alibaba's stock price in Chrome", "The Chrome search bar is in the middle of the screen and has \"在Google 中搜索,或输入网址\" written on it."],
                ["./example/1-2.jpg", "Search for Alibaba's stock price in Chrome", "The Chrome search bar is in the middle of the screen and has \"在Google 中搜索,或输入网址\" written on it."],
                ["./example/1-3.jpg", "Search for Alibaba's stock price in Chrome", "The Chrome search bar is in the middle of the screen and has \"在Google 中搜索,或输入网址\" written on it."],
            ], inputs=[image_input, instruction_input, knowledge_input])
            
        with gr.Column(scale=6):
            instruction_input.render()
            knowledge_input.render()
            with gr.Row():
                start_button = gr.Button("Submit")
                clear_button = gr.Button("Clear")
            output_component = gr.HTML(label="Chat history", value="<div class='chat-container'></div>")
            
    start_button.click(
        fn=lambda image, instruction, add_info, history, output: chatbot(image, instruction, add_info, history, output),
        inputs=[image_input, instruction_input, knowledge_input, history_state, history_output],
        outputs=[output_component, history_state, history_output]
    )

    clear_button.click(
        fn=reset_demo,
        inputs=[],
        outputs=[instruction_input, knowledge_input, output_component, history_state, history_output]
    )

demo.queue().launch(share=False)