Spaces:
Running
Running
File size: 24,949 Bytes
e78b889 3afb4b6 ac1c5af e78b889 1a06ab4 e78b889 ac1c5af e78b889 1a06ab4 e78b889 282e7e5 1a06ab4 3afb4b6 e78b889 3afb4b6 5f040af 3afb4b6 e78b889 ac1c5af e78b889 ac1c5af e78b889 ac1c5af e78b889 ac1c5af e78b889 ac1c5af e78b889 ac1c5af e78b889 ac1c5af e78b889 ac1c5af e78b889 ac1c5af e78b889 1a06ab4 e78b889 5f040af e78b889 64dfeeb e78b889 64dfeeb e78b889 64dfeeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
import ast
import re
import io
import os
import json
import copy
import shutil
import base64
import random
import requests
import gradio as gr
from datetime import datetime
from modelscope.pipelines import pipeline
from modelscope import snapshot_download
from modelscope.utils.constant import Tasks
from PIL import Image, ImageDraw, ImageFont
from PCAgent.api import inference_chat
from PCAgent.icon_localization import det
from PCAgent.text_localization_old import ocr
from PCAgent.prompt_qwen import get_subtask_prompt as get_subtask_prompt
from PCAgent.chat import init_action_chat, init_memory_chat, add_response
from PCAgent.prompt_qwen import get_action_prompt, get_process_prompt, get_memory_prompt
from PCAgent.merge_strategy import merge_boxes_and_texts, merge_all_icon_boxes, merge_boxes_and_texts_new
vl_model_version = os.getenv('vl_model_version')
llm_model_version = os.getenv('llm_model_version')
API_url = os.getenv('API_url')
token = os.getenv('token')
# os.environ["OCR_ACCESS_KEY_ID"] = os.getenv('OCR_ACCESS_KEY_ID')
# os.environ["OCR_ACCESS_KEY_SECRET"] = os.getenv('OCR_ACCESS_KEY_SECRET')
ocr_detection = pipeline(Tasks.ocr_detection, model='damo/cv_resnet18_ocr-detection-line-level_damo')
ocr_recognition = pipeline(Tasks.ocr_recognition, model='damo/cv_convnextTiny_ocr-recognition-document_damo')
tff_file = os.environ.get('tff_file')
radius = 100
def download_file(url, save_path):
response = requests.get(url, stream=True) # 以流的方式下载
response.raise_for_status() # 确保请求成功
with open(save_path, 'wb') as file:
for chunk in response.iter_content(chunk_size=8192): # 分块写入,防止占用过多内存
file.write(chunk)
download_file(tff_file, "arial.ttf")
chatbot_css = """
<style>
.chat-container {
display: flex;
flex-direction: column;
overflow-y: auto;
max-height: 800px;
margin: 10px;
}
.user-message, .bot-message {
margin: 5px;
padding: 10px;
border-radius: 10px;
}
.user-message {
text-align: right;
background-color: #7B68EE;
color: white;
align-self: flex-end;
}
.bot-message {
text-align: left;
background-color: #ADD8E6;
color: black;
align-self: flex-start;
}
.user-image {
text-align: right;
align-self: flex-end;
max-width: 150px;
max-height: 300px;
}
.bot-image {
text-align: left;
align-self: flex-start;
max-width: 200px;
max-height: 400px;
}
</style>
"""
def cmyk_to_rgb(c, m, y, k):
r = 255 * (1.0 - c / 255) * (1.0 - k / 255)
g = 255 * (1.0 - m / 255) * (1.0 - k / 255)
b = 255 * (1.0 - y / 255) * (1.0 - k / 255)
return int(r), int(g), int(b)
def draw_coordinates_boxes_on_image(image_path, coordinates, output_image_path, font_path, no_text=0):
image = Image.open(image_path)
width, height = image.size
draw = ImageDraw.Draw(image)
total_boxes = len(coordinates)
colors = [(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for _ in
range(total_boxes)]
for i, coord in enumerate(coordinates):
c, m, y, k = colors[i]
color = cmyk_to_rgb(c, m, y, k)
draw.rectangle(coord, outline=color, width=int(height * 0.0025))
if no_text != 1:
font = ImageFont.truetype(font_path, int(height * 0.012))
text_x = coord[0] + int(height * 0.0025)
text_y = max(0, coord[1] - int(height * 0.013))
draw.text((text_x, text_y), str(i + 1), fill=color, font=font)
image = image.convert('RGB')
if os.path.exists(output_image_path):
os.remove(output_image_path)
image.save(output_image_path)
def get_perception_infos(screenshot_file, screenshot_som_file, font_path):
total_width, total_height = Image.open(screenshot_file).size
# no partition
img_list = [screenshot_file]
img_x_list = [0]
img_y_list = [0]
coordinates = []
texts = []
padding = total_height * 0.0025 # 10
for i, img in enumerate(img_list):
width, height = Image.open(img).size
sub_text, sub_coordinates = ocr(img, ocr_detection, ocr_recognition) # for api
for coordinate in sub_coordinates:
coordinate[0] = int(max(0, img_x_list[i] + coordinate[0] - padding))
coordinate[2] = int(min(total_width, img_x_list[i] + coordinate[2] + padding))
coordinate[1] = int(max(0, img_y_list[i] + coordinate[1] - padding))
coordinate[3] = int(min(total_height,img_y_list[i] + coordinate[3] + padding))
sub_text_merge, sub_coordinates_merge = merge_boxes_and_texts_new(sub_text, sub_coordinates)
coordinates.extend(sub_coordinates_merge)
texts.extend(sub_text_merge)
merged_text, merged_text_coordinates = merge_boxes_and_texts(texts, coordinates)
filtered_merged_text = []
filtered_merged_text_coordinates = []
for i in range(len(merged_text)):
filtered_merged_text.append(merged_text[i])
filtered_merged_text_coordinates.append(merged_text_coordinates[i])
merged_text, merged_text_coordinates = filtered_merged_text, filtered_merged_text_coordinates
coordinates = []
for i, img in enumerate(img_list):
width, height = Image.open(img).size
sub_coordinates = det(img, "icon", groundingdino_model)
for coordinate in sub_coordinates:
coordinate[0] = int(max(0, img_x_list[i] + coordinate[0] - padding))
coordinate[2] = int(min(total_width, img_x_list[i] + coordinate[2] + padding))
coordinate[1] = int(max(0, img_y_list[i] + coordinate[1] - padding))
coordinate[3] = int(min(total_height, img_y_list[i] + coordinate[3] + padding))
sub_coordinates = merge_all_icon_boxes(sub_coordinates)
coordinates.extend(sub_coordinates)
merged_icon_coordinates = merge_all_icon_boxes(coordinates)
rec_list = merged_text_coordinates + merged_icon_coordinates
draw_coordinates_boxes_on_image(screenshot_file, copy.deepcopy(rec_list), screenshot_som_file, font_path)
mark_number = 0
perception_infos = []
for i in range(len(merged_text_coordinates)):
mark_number += 1
perception_info = {"text": "mark number: " + str(mark_number) + " text: " + merged_text[i], "coordinates": merged_text_coordinates[i]}
perception_infos.append(perception_info)
for i in range(len(merged_icon_coordinates)):
mark_number += 1
perception_info = {"text": "mark number: " + str(mark_number) + " icon", "coordinates": merged_icon_coordinates[i]}
perception_infos.append(perception_info)
for i in range(len(perception_infos)):
perception_infos[i]['coordinates'] = [int((perception_infos[i]['coordinates'][0]+perception_infos[i]['coordinates'][2])/2), int((perception_infos[i]['coordinates'][1]+perception_infos[i]['coordinates'][3])/2)]
return perception_infos, total_width, total_height
groundingdino_dir = snapshot_download('AI-ModelScope/GroundingDINO', revision='v1.0.0')
groundingdino_model = pipeline('grounding-dino-task', model=groundingdino_dir)
def analyze_string(s):
result = {
'type': None,
'format_keys': [],
'dict_content': None
}
format_pattern = re.compile(r'\{(\w+)\}')
# {'key': 'value'}
dict_pattern = re.compile(
r'\{(?:\s*[\'\"]\w+[\'\"]\s*:\s*[\'\"][^{}\'\"]+[\'\"]\s*,?)*\}'
)
dict_matches = dict_pattern.findall(s)
dicts = []
for match in dict_matches:
try:
parsed_dict = ast.literal_eval(match)
if isinstance(parsed_dict, dict):
dicts.append(parsed_dict)
except (ValueError, SyntaxError):
continue
has_dict = len(dicts) > 0
s_without_dicts = dict_pattern.sub('', s)
format_keys = format_pattern.findall(s_without_dicts)
has_format = len(format_keys) > 0
has_format_and_dict = has_format and has_dict
if has_format_and_dict:
result['type'] = 4
elif has_format:
result['type'] = 2
elif has_dict:
result['type'] = 3
else:
result['type'] = 1
if has_format:
result['format_keys'] = format_keys
if has_dict:
result['dict_content'] = dicts[0]
return result
import re
def is_good_string(s):
# Regex to match the dictionary-like part {'key1': 'value1', ...}
dict_pattern = r"\{('[^']+' *: *'[^']+' *(, *'[^']+' *: *'[^']+')*)?\}"
# Regex to match the item list part {item1, item2,...} with no single quotes in items
item_pattern = r"\{([a-zA-Z0-9_]+( *, *[a-zA-Z0-9_]+)*)?\}"
# Find all parts of the string contained within braces
parts = re.findall(r'\{.*?\}', s)
for part in parts:
# Check if the part matches either the dictionary pattern or item pattern
if not re.fullmatch(dict_pattern, part) and not re.fullmatch(item_pattern, part):
return False
return True
screenshot_root = "screenshot"
if os.path.exists(screenshot_root):
shutil.rmtree(screenshot_root)
os.mkdir(screenshot_root)
def image_to_base64(image):
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
img_html = f'<img src="data:image/png;base64,{img_str}" />'
return img_html
def chatbot(image, instruction, add_info, history, chat_log):
if history == {}:
output_for_save = []
thought_history = []
summary_history = []
action_history = []
summary = ""
action = ""
completed_requirements = ""
memory = ""
insight = ""
error_flag = False
user_msg = "<div class='user-message'>{}</div>".format(instruction)
step_idx = 0
else:
output_for_save = history["output_for_save"]
thought_history = history["thought_history"]
summary_history = history["summary_history"]
action_history = history["action_history"]
summary = history["summary"]
action = history["action"]
completed_requirements = history["completed_requirements"]
memory = history["memory"][0]
insight = history["insight"]
error_flag = history["error_flag"]
user_msg = "<div class='user-message'>{}</div>".format("I have uploaded the screenshot. Please continue operating.")
step_idx = history["history"]
current_time = datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
temp_file = f"temp_{current_time}"
os.mkdir(temp_file)
screenshot_file = os.path.join(screenshot_root, f"screenshot_{current_time}.png")
image.save(screenshot_file, format="PNG")
screenshot_som_file = screenshot_file.split(".")[0] + "_som." + screenshot_file.split(".")[1]
perception_infos, width, height = get_perception_infos(screenshot_file, screenshot_som_file, font_path="arial.ttf")
shutil.rmtree(temp_file)
os.mkdir(temp_file)
output_for_save_this_step = {}
prompt_action = get_action_prompt(instruction, perception_infos, width, height, thought_history, summary_history, action_history, [], summary, action, "", add_info, error_flag, completed_requirements, memory)
chat_action = init_action_chat()
chat_action = add_response("user", prompt_action, chat_action, [screenshot_som_file])
output_action = inference_chat(chat_action, vl_model_version, API_url, token)
output_for_save_this_step['action'] = output_action
action_json = json.loads(output_action.split('```json')[-1].split('```')[0])
thought = action_json['Thought']
summary = action_json['Summary']
action = action_json['Action']
chat_action = add_response("assistant", output_action, chat_action)
if "Double TapIdx" in action:
bot_response = "Please double click (click x 2) the red circle and upload the current screenshot again."
idx = action.split("(")[-1].split(")")[0]
coordinate = perception_infos[idx]['coordinates']
x, y = int(coordinate[0]), int(coordinate[1])
draw = ImageDraw.Draw(image)
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20)
elif "Double Tap" in action:
bot_response = "Please double click (click x 2) the red circle and upload the current screenshot again."
coordinate = action.split("(")[-1].split(")")[0].split(", ")
x, y = int(coordinate[0]), int(coordinate[1])
draw = ImageDraw.Draw(image)
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20)
elif "Triple TapIdx" in action:
bot_response = "Please triple click (click x 3) the red circle and upload the current screenshot again."
coordinate = action.split("(")[-1].split(")")[0].split(", ")
x, y = int(coordinate[0]), int(coordinate[1])
draw = ImageDraw.Draw(image)
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20)
elif "Triple Tap" in action:
bot_response = "Please triple click (click x 3) the red circle and upload the current screenshot again."
idx = action.split("(")[-1].split(")")[0]
coordinate = perception_infos[idx]['coordinates']
x, y = int(coordinate[0]), int(coordinate[1])
draw = ImageDraw.Draw(image)
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20)
elif "TapIdx" in action:
bot_response = "Please click (click x 1) the red circle and upload the current screenshot again."
idx = action.split("(")[-1].split(")")[0]
coordinate = perception_infos[idx]['coordinates']
x, y = int(coordinate[0]), int(coordinate[1])
draw = ImageDraw.Draw(image)
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20)
elif "Tap" in action:
bot_response = "Please click (click x 1) the red circle and upload the current screenshot again."
coordinate = action.split("(")[-1].split(")")[0].split(", ")
x, y = int(coordinate[0]), int(coordinate[1])
draw = ImageDraw.Draw(image)
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20)
elif "Shortcut" in action:
keys = action.split("(")[-1].split(")")[0].split(", ")
key1, key2 = keys[0].lower(), keys[1].lower()
bot_response = f"Please press {key1}+{key2} and upload the current screenshot again."
elif "Press" in action:
key = action.split("(")[-1].split(")")[0]
bot_response = f"Please press {key} and upload the current screenshot again."
elif "Open App" in action:
app = action.split("(")[-1].split(")")[0]
bot_response = f"Please open {app} app and upload the current screenshot again."
elif "Type" in action:
coordinate = action.split("(")[1].split(")")[0].split(", ")
x, y = int(coordinate[0]), int(coordinate[1])
if "[text]" not in action:
# for claude
if '[' not in action or ']' not in action:
# text = action.split('),')[-1].strip()
text = action.split('),')[-1].strip().split("(")[1].split(")")[0].replace("text: ", '').replace("'", "")
else:
text = action.split("[")[-1].split("]")[0]
else:
text = action.split(" \"")[-1].split("\"")[0]
draw = ImageDraw.Draw(image)
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20)
bot_response = f"Please type \"{text}\" in the red circle and upload the current screenshot again."
elif "Select (" in action:
content = action.split("(")[1].split(")")[0]
bot_response = f"Please select the text content \"{content}\" and upload the current screenshot again."
elif "Replace (" in action:
coordinate = action.split("(")[1].split(")")[0].split(", ")
x, y = int(coordinate[0]), int(coordinate[1])
if "[text]" not in action:
# for claude
if '[' not in action or ']' not in action:
# text = action.split('),')[-1].strip()
text = action.split('),')[-1].strip().split("(")[1].split(")")[0].replace("text: ", '')
else:
if "] with " in action:
text = action.split("] with ")[-1]
text = text.replace("\"", '').replace("'", '').strip('.')
else:
text = action.split("[")[-1].split("]")[0]
else:
text = action.split(" \"")[-1].split("\"")[0]
draw = ImageDraw.Draw(image)
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20)
bot_response = f"Please replace the text in the red circle by \"{text}\" and upload the current screenshot again."
elif "Append (" in action:
coordinate = action.split("(")[1].split(")")[0].split(", ")
x, y = int(coordinate[0]), int(coordinate[1])
if "[text]" not in action:
if '[' not in action or ']' not in action:
text = action.split('),')[-1].strip()
else:
text = action.split("[")[-1].split("]")[0]
else:
text = action.split(" \"")[-1].split("\"")[0]
draw = ImageDraw.Draw(image)
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20)
bot_response = f"Please insert the text \"{text}\" in the red circle and upload the current screenshot again."
elif "Stop" in action:
output_for_save.append(output_for_save_this_step)
bot_response = f"Answer: {output_for_save}, task completed"
prompt_memory = get_memory_prompt(insight)
chat_action = add_response("user", prompt_memory, chat_action)
output_memory = inference_chat(chat_action, vl_model_version, API_url, token)
chat_action = add_response("assistant", output_memory, chat_action)
output_memory = output_memory.split("### Important content ###")[-1].split("\n\n")[0].strip() + "\n"
if "None" not in output_memory and output_memory not in memory:
memory += output_memory
bot_text1 = "<div class='bot-message'>{}</div>".format("### Decision ###")
bot_thought = "<div class='bot-message'>{}</div>".format("Thought: " + thought)
bot_action = "<div class='bot-message'>{}</div>".format("Action: " + action)
bot_operation = "<div class='bot-message'>{}</div>".format("Operation: " + summary)
bot_text2 = "<div class='bot-message'>{}</div>".format("### Memory ###")
if len(memory) > 0:
bot_memory = "<div class='bot-message'>{}</div>".format(memory)
else:
bot_memory = "<div class='bot-message'>{}</div>".format("None")
bot_response = "<div class='bot-message'>{}</div>".format(bot_response)
if image is not None:
bot_img_html = image_to_base64(image)
bot_response = "<div class='bot-image'>{}</div>".format(bot_img_html) + bot_response
chat_log.append(user_msg)
shutil.rmtree(temp_file)
# os.remove(screenshot_file)
# os.remove(screenshot_som_file)
thought_history.append(thought)
summary_history.append(summary)
action_history.append(action)
prompt_planning = get_process_prompt(instruction, thought_history, summary_history, action_history, completed_requirements, add_info)
chat_planning = init_memory_chat()
chat_planning = add_response("user", prompt_planning, chat_planning )
output_planning = inference_chat(chat_planning, llm_model_version, API_url, token)
output_for_save_this_step['planning'] = output_planning
chat_planning = add_response("assistant", output_planning, chat_planning )
completed_requirements = output_planning.split("### Completed contents ###")[-1].replace("\n", " ").strip()
bot_text3 = "<div class='bot-message'>{}</div>".format("### Planning ###")
output_planning = "<div class='bot-message'>{}</div>".format(output_planning)
history["thought_history"] = thought_history
history["summary_history"] = summary_history
history["action_history"] = action_history
history["summary"] = summary
history["action"] = action
history["memory"] = memory,
history["memory_switch"] = True,
history["insight"] = insight
history["error_flag"] = error_flag
history["completed_requirements"] = completed_requirements
history["output_for_save"] = output_for_save
history["history"] = step_idx + 1
chat_log.append(bot_text3)
chat_log.append(output_planning)
chat_log.append(bot_text1)
chat_log.append(bot_thought)
chat_log.append(bot_action)
chat_log.append(bot_operation)
chat_log.append(bot_text2)
chat_log.append(bot_memory)
chat_log.append(bot_response)
chat_html = "<div class='chat-container'>{}</div>".format("".join(chat_log))
return chatbot_css + chat_html, history, chat_log
def lock_input(instruction):
return gr.update(value=instruction, interactive=False), gr.update(value=None)
def reset_demo():
return gr.update(value="", interactive=True), gr.update(value=None, interactive=True), "<div class='chat-container'></div>", {}, []
tos_markdown = ("""<div style="display:flex; gap: 0.25rem;" align="center">
<a href='https://github.com/X-PLUG/MobileAgent'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
<a href="https://arxiv.org/abs/2502.14282"><img src="https://img.shields.io/badge/Arxiv-2502.14282-red"></a>
<a href='https://github.com/X-PLUG/MobileAgent/stargazers'><img src='https://img.shields.io/github/stars/X-PLUG/MobileAgent.svg?style=social'></a>
</div>
If you like our project, please give us a star ✨ on Github for latest update.
**Terms of use**
1. Input your instruction in \"Instruction\", for example \"Turn on the dark mode\".
2. You can input helpful operation knowledge in \"Knowledge\".
3. Click \"Submit\" to get the operation. You need to operate your PC according to the operation and then upload the screenshot after your operation.
4. We show two examples below, each with three screenshots. Click and submit from top to bottom to experience it.
**使用说明**
1. 在“Instruction”中输入你的指令,例如“打开深色模式”。
2. 你可以在“Knowledge”中输入帮助性的操作知识。
3. 点击“Submit”来获得操作。你需要根据输出来操作PC,并且上传操作后的截图。
4. 我们在下方展示了两个例子,每个例子有三张截屏。请从上到下依次点击并提交来体验。""")
title_markdowm = ("""# PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC""")
instruction_input = gr.Textbox(label="Instruction", placeholder="Input your instruction")
knowledge_input = gr.Textbox(label="Knowledge", placeholder="Input your knowledge")
image_input = gr.Image(label="Screenshot", type="pil", height=350, width=700)
with gr.Blocks() as demo:
history_state = gr.State(value={})
history_output = gr.State(value=[])
with gr.Row():
gr.Markdown(title_markdowm)
with gr.Row():
with gr.Column(scale=5):
gr.Markdown(tos_markdown)
image_input.render()
gr.Examples(examples=[
["./example/1-1.jpg", "Search for Alibaba's stock price in Chrome", "The Chrome search bar is in the middle of the screen and has \"在Google 中搜索,或输入网址\" written on it."],
["./example/1-2.jpg", "Search for Alibaba's stock price in Chrome", "The Chrome search bar is in the middle of the screen and has \"在Google 中搜索,或输入网址\" written on it."],
["./example/1-3.jpg", "Search for Alibaba's stock price in Chrome", "The Chrome search bar is in the middle of the screen and has \"在Google 中搜索,或输入网址\" written on it."],
], inputs=[image_input, instruction_input, knowledge_input])
with gr.Column(scale=6):
instruction_input.render()
knowledge_input.render()
with gr.Row():
start_button = gr.Button("Submit")
clear_button = gr.Button("Clear")
output_component = gr.HTML(label="Chat history", value="<div class='chat-container'></div>")
start_button.click(
fn=lambda image, instruction, add_info, history, output: chatbot(image, instruction, add_info, history, output),
inputs=[image_input, instruction_input, knowledge_input, history_state, history_output],
outputs=[output_component, history_state, history_output]
)
clear_button.click(
fn=reset_demo,
inputs=[],
outputs=[instruction_input, knowledge_input, output_component, history_state, history_output]
)
demo.queue().launch(share=False) |