File size: 8,554 Bytes
3afb4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import numpy as np


def calculate_iou(box1, box2):
    x1_min, y1_min, x1_max, y1_max = box1
    x2_min, y2_min, x2_max, y2_max = box2

    inter_x_min = max(x1_min, x2_min)
    inter_y_min = max(y1_min, y2_min)
    inter_x_max = min(x1_max, x2_max)
    inter_y_max = min(y1_max, y2_max)

    inter_area = max(0, inter_x_max - inter_x_min) * max(0, inter_y_max - inter_y_min)
    box1_area = (x1_max - x1_min) * (y1_max - y1_min)
    box2_area = (x2_max - x2_min) * (y2_max - y2_min)

    union_area = box1_area + box2_area - inter_area
    iou = inter_area / union_area
    return iou


def compute_iou(box1, box2):
    """
    Compute the Intersection over Union (IoU) of two bounding boxes.

    Parameters:
    - box1: list or array [x1, y1, x2, y2]
    - box2: list or array [x1, y1, x2, y2]

    Returns:
    - iou: float, IoU value
    """
    x1_inter = max(box1[0], box2[0])
    y1_inter = max(box1[1], box2[1])
    x2_inter = min(box1[2], box2[2])
    y2_inter = min(box1[3], box2[3])

    # print(x2_inter, x1_inter, y2_inter, y1_inter)

    inter_area = max(0, x2_inter - x1_inter + 1) * max(0, y2_inter - y1_inter + 1)

    box1_area = (box1[2] - box1[0] + 1) * (box1[3] - box1[1] + 1)
    box2_area = (box2[2] - box2[0] + 1) * (box2[3] - box2[1] + 1)

    iou = inter_area / float(box1_area + box2_area - inter_area)

    return iou


def merge_boxes(box1, box2):
    x1_min, y1_min, x1_max, y1_max = box1
    x2_min, y2_min, x2_max, y2_max = box2

    merged_box = [min(x1_min, x2_min), min(y1_min, y2_min), max(x1_max, x2_max), max(y1_max, y2_max)]
    return merged_box


def merge_boxes_and_texts(texts, boxes, iou_threshold=0):
    """
    Merge bounding boxes and their corresponding texts based on IoU threshold.

    Parameters:
    - boxes: List of bounding boxes, with each box represented as [x1, y1, x2, y2].
    - texts: List of texts corresponding to each bounding box.
    - iou_threshold: Intersection-over-Union threshold for merging boxes.

    Returns:
    - merged_boxes: List of merged bounding boxes.
    - merged_texts: List of merged texts corresponding to the bounding boxes.
    """
    if len(boxes) == 0:
        return [], []

    # boxes = np.array(boxes)
    merged_boxes = []
    merged_texts = []

    while len(boxes) > 0:
        box = boxes[0]
        text = texts[0]
        boxes = boxes[1:]
        texts = texts[1:]
        to_merge_boxes = [box]
        to_merge_texts = [text]
        keep_boxes = []
        keep_texts = []

        for i, other_box in enumerate(boxes):
            if compute_iou(box, other_box) > iou_threshold:
                to_merge_boxes.append(other_box)
                to_merge_texts.append(texts[i])
            else:
                keep_boxes.append(other_box)
                keep_texts.append(texts[i])

        # Merge the to_merge boxes into a single box
        if len(to_merge_boxes) > 1:
            x1 = min(b[0] for b in to_merge_boxes)
            y1 = min(b[1] for b in to_merge_boxes)
            x2 = max(b[2] for b in to_merge_boxes)
            y2 = max(b[3] for b in to_merge_boxes)
            merged_box = [x1, y1, x2, y2]
            merged_text = " ".join(to_merge_texts)  # You can change the merging strategy here
            merged_boxes.append(merged_box)
            merged_texts.append(merged_text)
        else:
            merged_boxes.extend(to_merge_boxes)
            merged_texts.extend(to_merge_texts)

        # boxes = np.array(keep_boxes)
        boxes = keep_boxes
        texts = keep_texts

    return merged_texts, merged_boxes


def is_contained(bbox1, bbox2):
    x1_min, y1_min, x1_max, y1_max = bbox1
    x2_min, y2_min, x2_max, y2_max = bbox2

    if (x1_min >= x2_min and y1_min >= y2_min and x1_max <= x2_max and y1_max <= y2_max):
        return True
    elif (x2_min >= x1_min and y2_min >= y1_min and x2_max <= x1_max and y2_max <= y1_max):
        return True
    return False


def is_overlapping(bbox1, bbox2):
    x1_min, y1_min, x1_max, y1_max = bbox1
    x2_min, y2_min, x2_max, y2_max = bbox2

    inter_xmin = max(x1_min, x2_min)
    inter_ymin = max(y1_min, y2_min)
    inter_xmax = min(x1_max, x2_max)
    inter_ymax = min(y1_max, y2_max)

    if inter_xmin < inter_xmax and inter_ymin < inter_ymax:
        return True
    return False


def get_area(bbox):
    x_min, y_min, x_max, y_max = bbox
    return (x_max - x_min) * (y_max - y_min)


def merge_all_icon_boxes(bboxes):
    result_bboxes = []
    while bboxes:
        bbox = bboxes.pop(0)
        to_add = True

        for idx, existing_bbox in enumerate(result_bboxes):
            if is_contained(bbox, existing_bbox):
                if get_area(bbox) > get_area(existing_bbox):
                    result_bboxes[idx] = existing_bbox
                to_add = False
                break
            elif is_overlapping(bbox, existing_bbox):
                if get_area(bbox) < get_area(existing_bbox):
                    result_bboxes[idx] = bbox
                to_add = False
                break

        if to_add:
            result_bboxes.append(bbox)

    return result_bboxes


def merge_all_icon_boxes_new(elements):
    result_elements = []
    while elements:
        ele = elements.pop(0)
        bbox = [ele['position'][0], ele['position'][1], ele['position'][0]+ele['size'][0], ele['position'][1]+ele['size'][1]]
        # bbox = bboxes.pop(0)
        to_add = True

        for idx, existing_ele in enumerate(result_elements):
            existing_bbox = [existing_ele['position'][0], existing_ele['position'][1], existing_ele['position'][0]+existing_ele['size'][0], existing_ele['position'][1]+existing_ele['size'][1]]
            if is_contained(bbox, existing_bbox):
                if get_area(bbox) > get_area(existing_bbox):
                    result_elements[idx] = existing_ele
                to_add = False
                break
            elif is_overlapping(bbox, existing_bbox):
                if get_area(bbox) < get_area(existing_bbox):
                    result_elements[idx] = ele
                to_add = False
                break

        if to_add:
            result_elements.append(ele)

    return result_elements




def merge_bbox_groups(A, B, iou_threshold=0.8):
    i = 0
    while i < len(A):
        box_a = A[i]
        has_merged = False
        for j in range(len(B)):
            box_b = B[j]
            iou = calculate_iou(box_a, box_b)
            if iou > iou_threshold:
                merged_box = merge_boxes(box_a, box_b)
                A[i] = merged_box
                B.pop(j)
                has_merged = True
                break

        if has_merged:
            i -= 1
        i += 1

    return A, B


def bbox_iou(boxA, boxB):
    # Calculate Intersection over Union (IoU) between two bounding boxes
    xA = max(boxA[0], boxB[0])
    yA = max(boxA[1], boxB[1])
    xB = min(boxA[2], boxB[2])
    yB = min(boxA[3], boxB[3])
    interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
    boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
    boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)
    iou = interArea / float(boxAArea + boxBArea - interArea)
    return iou


def merge_boxes_and_texts_new(texts, bounding_boxes, iou_threshold=0):
    if not bounding_boxes:
        return [], []

    bounding_boxes = np.array(bounding_boxes)
    merged_boxes = []
    merged_texts = []

    used = np.zeros(len(bounding_boxes), dtype=bool)

    for i, boxA in enumerate(bounding_boxes):
        if used[i]:
            continue
        x_min, y_min, x_max, y_max = boxA
        # text = texts[i]
        text = ''

        overlapping_indices = [i] # []
        for j, boxB in enumerate(bounding_boxes):
            # print(i,j, bbox_iou(boxA, boxB))
            if i != j and not used[j] and bbox_iou(boxA, boxB) > iou_threshold:
                overlapping_indices.append(j)

        # Sort overlapping boxes by vertical position (top to bottom)
        overlapping_indices.sort(key=lambda idx: (bounding_boxes[idx][1] + bounding_boxes[idx][3])/2) # TODO

        for idx in overlapping_indices:
            boxB = bounding_boxes[idx]
            x_min = min(x_min, boxB[0])
            y_min = min(y_min, boxB[1])
            x_max = max(x_max, boxB[2])
            y_max = max(y_max, boxB[3])
            # text += " " + texts[idx]
            text += texts[idx]
            used[idx] = True

        merged_boxes.append([x_min, y_min, x_max, y_max])
        merged_texts.append(text)
        used[i] = True

    return merged_texts, merged_boxes