Spaces:
Runtime error
Runtime error
import ast | |
import re | |
import io | |
import os | |
import json | |
import copy | |
import shutil | |
import base64 | |
import random | |
import requests | |
import gradio as gr | |
from datetime import datetime | |
from modelscope.pipelines import pipeline | |
from modelscope import snapshot_download | |
from modelscope.utils.constant import Tasks | |
from PIL import Image, ImageDraw, ImageFont | |
from PCAgent.api import inference_chat | |
from PCAgent.icon_localization import det | |
from PCAgent.text_localization_old import ocr | |
from PCAgent.prompt_qwen import get_subtask_prompt as get_subtask_prompt | |
from PCAgent.chat import init_action_chat, init_memory_chat, add_response | |
from PCAgent.prompt_qwen import get_action_prompt, get_process_prompt, get_memory_prompt | |
from PCAgent.merge_strategy import merge_boxes_and_texts, merge_all_icon_boxes, merge_boxes_and_texts_new | |
vl_model_version = os.getenv('vl_model_version') | |
llm_model_version = os.getenv('llm_model_version') | |
API_url = os.getenv('API_url') | |
token = os.getenv('token') | |
# os.environ["OCR_ACCESS_KEY_ID"] = os.getenv('OCR_ACCESS_KEY_ID') | |
# os.environ["OCR_ACCESS_KEY_SECRET"] = os.getenv('OCR_ACCESS_KEY_SECRET') | |
ocr_detection = pipeline(Tasks.ocr_detection, model='damo/cv_resnet18_ocr-detection-line-level_damo') | |
ocr_recognition = pipeline(Tasks.ocr_recognition, model='damo/cv_convnextTiny_ocr-recognition-document_damo') | |
tff_file = os.environ.get('tff_file') | |
radius = 100 | |
def download_file(url, save_path): | |
response = requests.get(url, stream=True) # 以流的方式下载 | |
response.raise_for_status() # 确保请求成功 | |
with open(save_path, 'wb') as file: | |
for chunk in response.iter_content(chunk_size=8192): # 分块写入,防止占用过多内存 | |
file.write(chunk) | |
download_file(tff_file, "arial.ttf") | |
chatbot_css = """ | |
<style> | |
.chat-container { | |
display: flex; | |
flex-direction: column; | |
overflow-y: auto; | |
max-height: 800px; | |
margin: 10px; | |
} | |
.user-message, .bot-message { | |
margin: 5px; | |
padding: 10px; | |
border-radius: 10px; | |
} | |
.user-message { | |
text-align: right; | |
background-color: #7B68EE; | |
color: white; | |
align-self: flex-end; | |
} | |
.bot-message { | |
text-align: left; | |
background-color: #ADD8E6; | |
color: black; | |
align-self: flex-start; | |
} | |
.user-image { | |
text-align: right; | |
align-self: flex-end; | |
max-width: 150px; | |
max-height: 300px; | |
} | |
.bot-image { | |
text-align: left; | |
align-self: flex-start; | |
max-width: 200px; | |
max-height: 400px; | |
} | |
</style> | |
""" | |
def cmyk_to_rgb(c, m, y, k): | |
r = 255 * (1.0 - c / 255) * (1.0 - k / 255) | |
g = 255 * (1.0 - m / 255) * (1.0 - k / 255) | |
b = 255 * (1.0 - y / 255) * (1.0 - k / 255) | |
return int(r), int(g), int(b) | |
def draw_coordinates_boxes_on_image(image_path, coordinates, output_image_path, font_path, no_text=0): | |
image = Image.open(image_path) | |
width, height = image.size | |
draw = ImageDraw.Draw(image) | |
total_boxes = len(coordinates) | |
colors = [(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for _ in | |
range(total_boxes)] | |
for i, coord in enumerate(coordinates): | |
c, m, y, k = colors[i] | |
color = cmyk_to_rgb(c, m, y, k) | |
draw.rectangle(coord, outline=color, width=int(height * 0.0025)) | |
if no_text != 1: | |
font = ImageFont.truetype(font_path, int(height * 0.012)) | |
text_x = coord[0] + int(height * 0.0025) | |
text_y = max(0, coord[1] - int(height * 0.013)) | |
draw.text((text_x, text_y), str(i + 1), fill=color, font=font) | |
image = image.convert('RGB') | |
if os.path.exists(output_image_path): | |
os.remove(output_image_path) | |
image.save(output_image_path) | |
def get_perception_infos(screenshot_file, screenshot_som_file, font_path): | |
total_width, total_height = Image.open(screenshot_file).size | |
# no partition | |
img_list = [screenshot_file] | |
img_x_list = [0] | |
img_y_list = [0] | |
coordinates = [] | |
texts = [] | |
padding = total_height * 0.0025 # 10 | |
for i, img in enumerate(img_list): | |
width, height = Image.open(img).size | |
sub_text, sub_coordinates = ocr(img, ocr_detection, ocr_recognition) # for api | |
for coordinate in sub_coordinates: | |
coordinate[0] = int(max(0, img_x_list[i] + coordinate[0] - padding)) | |
coordinate[2] = int(min(total_width, img_x_list[i] + coordinate[2] + padding)) | |
coordinate[1] = int(max(0, img_y_list[i] + coordinate[1] - padding)) | |
coordinate[3] = int(min(total_height,img_y_list[i] + coordinate[3] + padding)) | |
sub_text_merge, sub_coordinates_merge = merge_boxes_and_texts_new(sub_text, sub_coordinates) | |
coordinates.extend(sub_coordinates_merge) | |
texts.extend(sub_text_merge) | |
merged_text, merged_text_coordinates = merge_boxes_and_texts(texts, coordinates) | |
filtered_merged_text = [] | |
filtered_merged_text_coordinates = [] | |
for i in range(len(merged_text)): | |
filtered_merged_text.append(merged_text[i]) | |
filtered_merged_text_coordinates.append(merged_text_coordinates[i]) | |
merged_text, merged_text_coordinates = filtered_merged_text, filtered_merged_text_coordinates | |
coordinates = [] | |
for i, img in enumerate(img_list): | |
width, height = Image.open(img).size | |
sub_coordinates = det(img, "icon", groundingdino_model) | |
for coordinate in sub_coordinates: | |
coordinate[0] = int(max(0, img_x_list[i] + coordinate[0] - padding)) | |
coordinate[2] = int(min(total_width, img_x_list[i] + coordinate[2] + padding)) | |
coordinate[1] = int(max(0, img_y_list[i] + coordinate[1] - padding)) | |
coordinate[3] = int(min(total_height, img_y_list[i] + coordinate[3] + padding)) | |
sub_coordinates = merge_all_icon_boxes(sub_coordinates) | |
coordinates.extend(sub_coordinates) | |
merged_icon_coordinates = merge_all_icon_boxes(coordinates) | |
rec_list = merged_text_coordinates + merged_icon_coordinates | |
draw_coordinates_boxes_on_image(screenshot_file, copy.deepcopy(rec_list), screenshot_som_file, font_path) | |
mark_number = 0 | |
perception_infos = [] | |
for i in range(len(merged_text_coordinates)): | |
mark_number += 1 | |
perception_info = {"text": "mark number: " + str(mark_number) + " text: " + merged_text[i], "coordinates": merged_text_coordinates[i]} | |
perception_infos.append(perception_info) | |
for i in range(len(merged_icon_coordinates)): | |
mark_number += 1 | |
perception_info = {"text": "mark number: " + str(mark_number) + " icon", "coordinates": merged_icon_coordinates[i]} | |
perception_infos.append(perception_info) | |
for i in range(len(perception_infos)): | |
perception_infos[i]['coordinates'] = [int((perception_infos[i]['coordinates'][0]+perception_infos[i]['coordinates'][2])/2), int((perception_infos[i]['coordinates'][1]+perception_infos[i]['coordinates'][3])/2)] | |
return perception_infos, total_width, total_height | |
groundingdino_dir = snapshot_download('AI-ModelScope/GroundingDINO', revision='v1.0.0') | |
groundingdino_model = pipeline('grounding-dino-task', model=groundingdino_dir) | |
def analyze_string(s): | |
result = { | |
'type': None, | |
'format_keys': [], | |
'dict_content': None | |
} | |
format_pattern = re.compile(r'\{(\w+)\}') | |
# {'key': 'value'} | |
dict_pattern = re.compile( | |
r'\{(?:\s*[\'\"]\w+[\'\"]\s*:\s*[\'\"][^{}\'\"]+[\'\"]\s*,?)*\}' | |
) | |
dict_matches = dict_pattern.findall(s) | |
dicts = [] | |
for match in dict_matches: | |
try: | |
parsed_dict = ast.literal_eval(match) | |
if isinstance(parsed_dict, dict): | |
dicts.append(parsed_dict) | |
except (ValueError, SyntaxError): | |
continue | |
has_dict = len(dicts) > 0 | |
s_without_dicts = dict_pattern.sub('', s) | |
format_keys = format_pattern.findall(s_without_dicts) | |
has_format = len(format_keys) > 0 | |
has_format_and_dict = has_format and has_dict | |
if has_format_and_dict: | |
result['type'] = 4 | |
elif has_format: | |
result['type'] = 2 | |
elif has_dict: | |
result['type'] = 3 | |
else: | |
result['type'] = 1 | |
if has_format: | |
result['format_keys'] = format_keys | |
if has_dict: | |
result['dict_content'] = dicts[0] | |
return result | |
import re | |
def is_good_string(s): | |
# Regex to match the dictionary-like part {'key1': 'value1', ...} | |
dict_pattern = r"\{('[^']+' *: *'[^']+' *(, *'[^']+' *: *'[^']+')*)?\}" | |
# Regex to match the item list part {item1, item2,...} with no single quotes in items | |
item_pattern = r"\{([a-zA-Z0-9_]+( *, *[a-zA-Z0-9_]+)*)?\}" | |
# Find all parts of the string contained within braces | |
parts = re.findall(r'\{.*?\}', s) | |
for part in parts: | |
# Check if the part matches either the dictionary pattern or item pattern | |
if not re.fullmatch(dict_pattern, part) and not re.fullmatch(item_pattern, part): | |
return False | |
return True | |
screenshot_root = "screenshot" | |
if os.path.exists(screenshot_root): | |
shutil.rmtree(screenshot_root) | |
os.mkdir(screenshot_root) | |
def image_to_base64(image): | |
buffered = io.BytesIO() | |
image.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
img_html = f'<img src="data:image/png;base64,{img_str}" />' | |
return img_html | |
def chatbot(image, instruction, add_info, history, chat_log): | |
if history == {}: | |
output_for_save = [] | |
thought_history = [] | |
summary_history = [] | |
action_history = [] | |
summary = "" | |
action = "" | |
completed_requirements = "" | |
memory = "" | |
insight = "" | |
error_flag = False | |
user_msg = "<div class='user-message'>{}</div>".format(instruction) | |
step_idx = 0 | |
else: | |
output_for_save = history["output_for_save"] | |
thought_history = history["thought_history"] | |
summary_history = history["summary_history"] | |
action_history = history["action_history"] | |
summary = history["summary"] | |
action = history["action"] | |
completed_requirements = history["completed_requirements"] | |
memory = history["memory"][0] | |
insight = history["insight"] | |
error_flag = history["error_flag"] | |
user_msg = "<div class='user-message'>{}</div>".format("I have uploaded the screenshot. Please continue operating.") | |
step_idx = history["history"] | |
current_time = datetime.now().strftime("%Y-%m-%d-%H-%M-%S") | |
temp_file = f"temp_{current_time}" | |
os.mkdir(temp_file) | |
screenshot_file = os.path.join(screenshot_root, f"screenshot_{current_time}.png") | |
image.save(screenshot_file, format="PNG") | |
screenshot_som_file = screenshot_file.split(".")[0] + "_som." + screenshot_file.split(".")[1] | |
perception_infos, width, height = get_perception_infos(screenshot_file, screenshot_som_file, font_path="arial.ttf") | |
shutil.rmtree(temp_file) | |
os.mkdir(temp_file) | |
output_for_save_this_step = {} | |
prompt_action = get_action_prompt(instruction, perception_infos, width, height, thought_history, summary_history, action_history, [], summary, action, "", add_info, error_flag, completed_requirements, memory) | |
chat_action = init_action_chat() | |
chat_action = add_response("user", prompt_action, chat_action, [screenshot_som_file]) | |
output_action = inference_chat(chat_action, vl_model_version, API_url, token) | |
output_for_save_this_step['action'] = output_action | |
action_json = json.loads(output_action.split('```json')[-1].split('```')[0]) | |
thought = action_json['Thought'] | |
summary = action_json['Summary'] | |
action = action_json['Action'] | |
chat_action = add_response("assistant", output_action, chat_action) | |
if "Double TapIdx" in action: | |
bot_response = "Please double click (click x 2) the red circle and upload the current screenshot again." | |
idx = action.split("(")[-1].split(")")[0] | |
coordinate = perception_infos[idx]['coordinates'] | |
x, y = int(coordinate[0]), int(coordinate[1]) | |
draw = ImageDraw.Draw(image) | |
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20) | |
elif "Double Tap" in action: | |
bot_response = "Please double click (click x 2) the red circle and upload the current screenshot again." | |
coordinate = action.split("(")[-1].split(")")[0].split(", ") | |
x, y = int(coordinate[0]), int(coordinate[1]) | |
draw = ImageDraw.Draw(image) | |
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20) | |
elif "Triple TapIdx" in action: | |
bot_response = "Please triple click (click x 3) the red circle and upload the current screenshot again." | |
coordinate = action.split("(")[-1].split(")")[0].split(", ") | |
x, y = int(coordinate[0]), int(coordinate[1]) | |
draw = ImageDraw.Draw(image) | |
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20) | |
elif "Triple Tap" in action: | |
bot_response = "Please triple click (click x 3) the red circle and upload the current screenshot again." | |
idx = action.split("(")[-1].split(")")[0] | |
coordinate = perception_infos[idx]['coordinates'] | |
x, y = int(coordinate[0]), int(coordinate[1]) | |
draw = ImageDraw.Draw(image) | |
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20) | |
elif "TapIdx" in action: | |
bot_response = "Please click (click x 1) the red circle and upload the current screenshot again." | |
idx = action.split("(")[-1].split(")")[0] | |
coordinate = perception_infos[idx]['coordinates'] | |
x, y = int(coordinate[0]), int(coordinate[1]) | |
draw = ImageDraw.Draw(image) | |
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20) | |
elif "Tap" in action: | |
bot_response = "Please click (click x 1) the red circle and upload the current screenshot again." | |
coordinate = action.split("(")[-1].split(")")[0].split(", ") | |
x, y = int(coordinate[0]), int(coordinate[1]) | |
draw = ImageDraw.Draw(image) | |
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20) | |
elif "Shortcut" in action: | |
keys = action.split("(")[-1].split(")")[0].split(", ") | |
key1, key2 = keys[0].lower(), keys[1].lower() | |
bot_response = f"Please press {key1}+{key2} and upload the current screenshot again." | |
elif "Press" in action: | |
key = action.split("(")[-1].split(")")[0] | |
bot_response = f"Please press {key} and upload the current screenshot again." | |
elif "Open App" in action: | |
app = action.split("(")[-1].split(")")[0] | |
bot_response = f"Please open {app} app and upload the current screenshot again." | |
elif "Type" in action: | |
coordinate = action.split("(")[1].split(")")[0].split(", ") | |
x, y = int(coordinate[0]), int(coordinate[1]) | |
if "[text]" not in action: | |
# for claude | |
if '[' not in action or ']' not in action: | |
# text = action.split('),')[-1].strip() | |
text = action.split('),')[-1].strip().split("(")[1].split(")")[0].replace("text: ", '').replace("'", "") | |
else: | |
text = action.split("[")[-1].split("]")[0] | |
else: | |
text = action.split(" \"")[-1].split("\"")[0] | |
draw = ImageDraw.Draw(image) | |
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20) | |
bot_response = f"Please type \"{text}\" in the red circle and upload the current screenshot again." | |
elif "Select (" in action: | |
content = action.split("(")[1].split(")")[0] | |
bot_response = f"Please select the text content \"{content}\" and upload the current screenshot again." | |
elif "Replace (" in action: | |
coordinate = action.split("(")[1].split(")")[0].split(", ") | |
x, y = int(coordinate[0]), int(coordinate[1]) | |
if "[text]" not in action: | |
# for claude | |
if '[' not in action or ']' not in action: | |
# text = action.split('),')[-1].strip() | |
text = action.split('),')[-1].strip().split("(")[1].split(")")[0].replace("text: ", '') | |
else: | |
if "] with " in action: | |
text = action.split("] with ")[-1] | |
text = text.replace("\"", '').replace("'", '').strip('.') | |
else: | |
text = action.split("[")[-1].split("]")[0] | |
else: | |
text = action.split(" \"")[-1].split("\"")[0] | |
draw = ImageDraw.Draw(image) | |
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20) | |
bot_response = f"Please replace the text in the red circle by \"{text}\" and upload the current screenshot again." | |
elif "Append (" in action: | |
coordinate = action.split("(")[1].split(")")[0].split(", ") | |
x, y = int(coordinate[0]), int(coordinate[1]) | |
if "[text]" not in action: | |
if '[' not in action or ']' not in action: | |
text = action.split('),')[-1].strip() | |
else: | |
text = action.split("[")[-1].split("]")[0] | |
else: | |
text = action.split(" \"")[-1].split("\"")[0] | |
draw = ImageDraw.Draw(image) | |
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=20) | |
bot_response = f"Please insert the text \"{text}\" in the red circle and upload the current screenshot again." | |
elif "Stop" in action: | |
output_for_save.append(output_for_save_this_step) | |
bot_response = f"Answer: {output_for_save}, task completed" | |
prompt_memory = get_memory_prompt(insight) | |
chat_action = add_response("user", prompt_memory, chat_action) | |
output_memory = inference_chat(chat_action, vl_model_version, API_url, token) | |
chat_action = add_response("assistant", output_memory, chat_action) | |
output_memory = output_memory.split("### Important content ###")[-1].split("\n\n")[0].strip() + "\n" | |
if "None" not in output_memory and output_memory not in memory: | |
memory += output_memory | |
bot_text1 = "<div class='bot-message'>{}</div>".format("### Decision ###") | |
bot_thought = "<div class='bot-message'>{}</div>".format("Thought: " + thought) | |
bot_action = "<div class='bot-message'>{}</div>".format("Action: " + action) | |
bot_operation = "<div class='bot-message'>{}</div>".format("Operation: " + summary) | |
bot_text2 = "<div class='bot-message'>{}</div>".format("### Memory ###") | |
if len(memory) > 0: | |
bot_memory = "<div class='bot-message'>{}</div>".format(memory) | |
else: | |
bot_memory = "<div class='bot-message'>{}</div>".format("None") | |
bot_response = "<div class='bot-message'>{}</div>".format(bot_response) | |
if image is not None: | |
bot_img_html = image_to_base64(image) | |
bot_response = "<div class='bot-image'>{}</div>".format(bot_img_html) + bot_response | |
chat_log.append(user_msg) | |
shutil.rmtree(temp_file) | |
# os.remove(screenshot_file) | |
# os.remove(screenshot_som_file) | |
thought_history.append(thought) | |
summary_history.append(summary) | |
action_history.append(action) | |
prompt_planning = get_process_prompt(instruction, thought_history, summary_history, action_history, completed_requirements, add_info) | |
chat_planning = init_memory_chat() | |
chat_planning = add_response("user", prompt_planning, chat_planning ) | |
output_planning = inference_chat(chat_planning, llm_model_version, API_url, token) | |
output_for_save_this_step['planning'] = output_planning | |
chat_planning = add_response("assistant", output_planning, chat_planning ) | |
completed_requirements = output_planning.split("### Completed contents ###")[-1].replace("\n", " ").strip() | |
bot_text3 = "<div class='bot-message'>{}</div>".format("### Planning ###") | |
output_planning = "<div class='bot-message'>{}</div>".format(output_planning) | |
history["thought_history"] = thought_history | |
history["summary_history"] = summary_history | |
history["action_history"] = action_history | |
history["summary"] = summary | |
history["action"] = action | |
history["memory"] = memory, | |
history["memory_switch"] = True, | |
history["insight"] = insight | |
history["error_flag"] = error_flag | |
history["completed_requirements"] = completed_requirements | |
history["output_for_save"] = output_for_save | |
history["history"] = step_idx + 1 | |
chat_log.append(bot_text3) | |
chat_log.append(output_planning) | |
chat_log.append(bot_text1) | |
chat_log.append(bot_thought) | |
chat_log.append(bot_action) | |
chat_log.append(bot_operation) | |
chat_log.append(bot_text2) | |
chat_log.append(bot_memory) | |
chat_log.append(bot_response) | |
chat_html = "<div class='chat-container'>{}</div>".format("".join(chat_log)) | |
return chatbot_css + chat_html, history, chat_log | |
def lock_input(instruction): | |
return gr.update(value=instruction, interactive=False), gr.update(value=None) | |
def reset_demo(): | |
return gr.update(value="", interactive=True), gr.update(value=None, interactive=True), "<div class='chat-container'></div>", {}, [] | |
tos_markdown = ("""<div style="display:flex; gap: 0.25rem;" align="center"> | |
<a href='https://github.com/X-PLUG/MobileAgent'><img src='https://img.shields.io/badge/Github-Code-blue'></a> | |
<a href="https://arxiv.org/abs/2502.14282"><img src="https://img.shields.io/badge/Arxiv-2502.14282-red"></a> | |
<a href='https://github.com/X-PLUG/MobileAgent/stargazers'><img src='https://img.shields.io/github/stars/X-PLUG/MobileAgent.svg?style=social'></a> | |
</div> | |
If you like our project, please give us a star ✨ on Github for latest update. | |
**Terms of use** | |
1. Input your instruction in \"Instruction\", for example \"Turn on the dark mode\". | |
2. You can input helpful operation knowledge in \"Knowledge\". | |
3. Click \"Submit\" to get the operation. You need to operate your PC according to the operation and then upload the screenshot after your operation. | |
4. We show two examples below, each with three screenshots. Click and submit from top to bottom to experience it. | |
**使用说明** | |
1. 在“Instruction”中输入你的指令,例如“打开深色模式”。 | |
2. 你可以在“Knowledge”中输入帮助性的操作知识。 | |
3. 点击“Submit”来获得操作。你需要根据输出来操作PC,并且上传操作后的截图。 | |
4. 我们在下方展示了两个例子,每个例子有三张截屏。请从上到下依次点击并提交来体验。""") | |
title_markdowm = ("""# PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC""") | |
instruction_input = gr.Textbox(label="Instruction", placeholder="Input your instruction") | |
knowledge_input = gr.Textbox(label="Knowledge", placeholder="Input your knowledge") | |
image_input = gr.Image(label="Screenshot", type="pil", height=350, width=700) | |
with gr.Blocks() as demo: | |
history_state = gr.State(value={}) | |
history_output = gr.State(value=[]) | |
with gr.Row(): | |
gr.Markdown(title_markdowm) | |
with gr.Row(): | |
with gr.Column(scale=5): | |
gr.Markdown(tos_markdown) | |
image_input.render() | |
gr.Examples(examples=[ | |
["./example/1-1.jpg", "Search for Alibaba's stock price in Chrome", "The Chrome search bar is in the middle of the screen and has \"在Google 中搜索,或输入网址\" written on it."], | |
["./example/1-2.jpg", "Search for Alibaba's stock price in Chrome", "The Chrome search bar is in the middle of the screen and has \"在Google 中搜索,或输入网址\" written on it."], | |
["./example/1-3.jpg", "Search for Alibaba's stock price in Chrome", "The Chrome search bar is in the middle of the screen and has \"在Google 中搜索,或输入网址\" written on it."], | |
], inputs=[image_input, instruction_input, knowledge_input]) | |
with gr.Column(scale=6): | |
instruction_input.render() | |
knowledge_input.render() | |
with gr.Row(): | |
start_button = gr.Button("Submit") | |
clear_button = gr.Button("Clear") | |
output_component = gr.HTML(label="Chat history", value="<div class='chat-container'></div>") | |
start_button.click( | |
fn=lambda image, instruction, add_info, history, output: chatbot(image, instruction, add_info, history, output), | |
inputs=[image_input, instruction_input, knowledge_input, history_state, history_output], | |
outputs=[output_component, history_state, history_output] | |
) | |
clear_button.click( | |
fn=reset_demo, | |
inputs=[], | |
outputs=[instruction_input, knowledge_input, output_component, history_state, history_output] | |
) | |
demo.queue().launch(share=False) |