import numpy as np def calculate_iou(box1, box2): x1_min, y1_min, x1_max, y1_max = box1 x2_min, y2_min, x2_max, y2_max = box2 inter_x_min = max(x1_min, x2_min) inter_y_min = max(y1_min, y2_min) inter_x_max = min(x1_max, x2_max) inter_y_max = min(y1_max, y2_max) inter_area = max(0, inter_x_max - inter_x_min) * max(0, inter_y_max - inter_y_min) box1_area = (x1_max - x1_min) * (y1_max - y1_min) box2_area = (x2_max - x2_min) * (y2_max - y2_min) union_area = box1_area + box2_area - inter_area iou = inter_area / union_area return iou def compute_iou(box1, box2): """ Compute the Intersection over Union (IoU) of two bounding boxes. Parameters: - box1: list or array [x1, y1, x2, y2] - box2: list or array [x1, y1, x2, y2] Returns: - iou: float, IoU value """ x1_inter = max(box1[0], box2[0]) y1_inter = max(box1[1], box2[1]) x2_inter = min(box1[2], box2[2]) y2_inter = min(box1[3], box2[3]) # print(x2_inter, x1_inter, y2_inter, y1_inter) inter_area = max(0, x2_inter - x1_inter + 1) * max(0, y2_inter - y1_inter + 1) box1_area = (box1[2] - box1[0] + 1) * (box1[3] - box1[1] + 1) box2_area = (box2[2] - box2[0] + 1) * (box2[3] - box2[1] + 1) iou = inter_area / float(box1_area + box2_area - inter_area) return iou def merge_boxes(box1, box2): x1_min, y1_min, x1_max, y1_max = box1 x2_min, y2_min, x2_max, y2_max = box2 merged_box = [min(x1_min, x2_min), min(y1_min, y2_min), max(x1_max, x2_max), max(y1_max, y2_max)] return merged_box def merge_boxes_and_texts(texts, boxes, iou_threshold=0): """ Merge bounding boxes and their corresponding texts based on IoU threshold. Parameters: - boxes: List of bounding boxes, with each box represented as [x1, y1, x2, y2]. - texts: List of texts corresponding to each bounding box. - iou_threshold: Intersection-over-Union threshold for merging boxes. Returns: - merged_boxes: List of merged bounding boxes. - merged_texts: List of merged texts corresponding to the bounding boxes. """ if len(boxes) == 0: return [], [] # boxes = np.array(boxes) merged_boxes = [] merged_texts = [] while len(boxes) > 0: box = boxes[0] text = texts[0] boxes = boxes[1:] texts = texts[1:] to_merge_boxes = [box] to_merge_texts = [text] keep_boxes = [] keep_texts = [] for i, other_box in enumerate(boxes): if compute_iou(box, other_box) > iou_threshold: to_merge_boxes.append(other_box) to_merge_texts.append(texts[i]) else: keep_boxes.append(other_box) keep_texts.append(texts[i]) # Merge the to_merge boxes into a single box if len(to_merge_boxes) > 1: x1 = min(b[0] for b in to_merge_boxes) y1 = min(b[1] for b in to_merge_boxes) x2 = max(b[2] for b in to_merge_boxes) y2 = max(b[3] for b in to_merge_boxes) merged_box = [x1, y1, x2, y2] merged_text = " ".join(to_merge_texts) # You can change the merging strategy here merged_boxes.append(merged_box) merged_texts.append(merged_text) else: merged_boxes.extend(to_merge_boxes) merged_texts.extend(to_merge_texts) # boxes = np.array(keep_boxes) boxes = keep_boxes texts = keep_texts return merged_texts, merged_boxes def is_contained(bbox1, bbox2): x1_min, y1_min, x1_max, y1_max = bbox1 x2_min, y2_min, x2_max, y2_max = bbox2 if (x1_min >= x2_min and y1_min >= y2_min and x1_max <= x2_max and y1_max <= y2_max): return True elif (x2_min >= x1_min and y2_min >= y1_min and x2_max <= x1_max and y2_max <= y1_max): return True return False def is_overlapping(bbox1, bbox2): x1_min, y1_min, x1_max, y1_max = bbox1 x2_min, y2_min, x2_max, y2_max = bbox2 inter_xmin = max(x1_min, x2_min) inter_ymin = max(y1_min, y2_min) inter_xmax = min(x1_max, x2_max) inter_ymax = min(y1_max, y2_max) if inter_xmin < inter_xmax and inter_ymin < inter_ymax: return True return False def get_area(bbox): x_min, y_min, x_max, y_max = bbox return (x_max - x_min) * (y_max - y_min) def merge_all_icon_boxes(bboxes): result_bboxes = [] while bboxes: bbox = bboxes.pop(0) to_add = True for idx, existing_bbox in enumerate(result_bboxes): if is_contained(bbox, existing_bbox): if get_area(bbox) > get_area(existing_bbox): result_bboxes[idx] = existing_bbox to_add = False break elif is_overlapping(bbox, existing_bbox): if get_area(bbox) < get_area(existing_bbox): result_bboxes[idx] = bbox to_add = False break if to_add: result_bboxes.append(bbox) return result_bboxes def merge_all_icon_boxes_new(elements): result_elements = [] while elements: ele = elements.pop(0) bbox = [ele['position'][0], ele['position'][1], ele['position'][0]+ele['size'][0], ele['position'][1]+ele['size'][1]] # bbox = bboxes.pop(0) to_add = True for idx, existing_ele in enumerate(result_elements): existing_bbox = [existing_ele['position'][0], existing_ele['position'][1], existing_ele['position'][0]+existing_ele['size'][0], existing_ele['position'][1]+existing_ele['size'][1]] if is_contained(bbox, existing_bbox): if get_area(bbox) > get_area(existing_bbox): result_elements[idx] = existing_ele to_add = False break elif is_overlapping(bbox, existing_bbox): if get_area(bbox) < get_area(existing_bbox): result_elements[idx] = ele to_add = False break if to_add: result_elements.append(ele) return result_elements def merge_bbox_groups(A, B, iou_threshold=0.8): i = 0 while i < len(A): box_a = A[i] has_merged = False for j in range(len(B)): box_b = B[j] iou = calculate_iou(box_a, box_b) if iou > iou_threshold: merged_box = merge_boxes(box_a, box_b) A[i] = merged_box B.pop(j) has_merged = True break if has_merged: i -= 1 i += 1 return A, B def bbox_iou(boxA, boxB): # Calculate Intersection over Union (IoU) between two bounding boxes xA = max(boxA[0], boxB[0]) yA = max(boxA[1], boxB[1]) xB = min(boxA[2], boxB[2]) yB = min(boxA[3], boxB[3]) interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1) boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1) boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1) iou = interArea / float(boxAArea + boxBArea - interArea) return iou def merge_boxes_and_texts_new(texts, bounding_boxes, iou_threshold=0): if not bounding_boxes: return [], [] bounding_boxes = np.array(bounding_boxes) merged_boxes = [] merged_texts = [] used = np.zeros(len(bounding_boxes), dtype=bool) for i, boxA in enumerate(bounding_boxes): if used[i]: continue x_min, y_min, x_max, y_max = boxA # text = texts[i] text = '' overlapping_indices = [i] # [] for j, boxB in enumerate(bounding_boxes): # print(i,j, bbox_iou(boxA, boxB)) if i != j and not used[j] and bbox_iou(boxA, boxB) > iou_threshold: overlapping_indices.append(j) # Sort overlapping boxes by vertical position (top to bottom) overlapping_indices.sort(key=lambda idx: (bounding_boxes[idx][1] + bounding_boxes[idx][3])/2) # TODO for idx in overlapping_indices: boxB = bounding_boxes[idx] x_min = min(x_min, boxB[0]) y_min = min(y_min, boxB[1]) x_max = max(x_max, boxB[2]) y_max = max(y_max, boxB[3]) # text += " " + texts[idx] text += texts[idx] used[idx] = True merged_boxes.append([x_min, y_min, x_max, y_max]) merged_texts.append(text) used[i] = True return merged_texts, merged_boxes