File size: 6,838 Bytes
0f1e910
9d3c32a
 
0f1e910
 
 
 
 
 
9d3c32a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f1e910
9d3c32a
0f1e910
 
 
9d3c32a
0f1e910
9d3c32a
 
 
0f1e910
 
 
 
 
 
 
9d3c32a
0f1e910
 
 
 
 
 
 
 
9d3c32a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

import React, { useState, useEffect, useRef } from "react";
import { useToast } from "@/components/ui/use-toast";
import { TrainingConfig, TrainingStatus, LogEntry } from "@/components/training/types";
import TrainingHeader from "@/components/training/TrainingHeader";
import TrainingTabs from "@/components/training/TrainingTabs";
import ConfigurationTab from "@/components/training/ConfigurationTab";
import MonitoringTab from "@/components/training/MonitoringTab";
import TrainingControls from "@/components/training/TrainingControls";

const Training = () => {
  const { toast } = useToast();
  const logContainerRef = useRef<HTMLDivElement>(null);

  const [trainingConfig, setTrainingConfig] = useState<TrainingConfig>({
    dataset_repo_id: "",
    policy_type: "act",
    steps: 10000,
    batch_size: 8,
    seed: 1000,
    num_workers: 4,
    log_freq: 250,
    save_freq: 1000,
    eval_freq: 0,
    save_checkpoint: true,
    output_dir: "outputs/train",
    resume: false,
    wandb_enable: false,
    wandb_mode: "online",
    wandb_disable_artifact: false,
    eval_n_episodes: 10,
    eval_batch_size: 50,
    eval_use_async_envs: false,
    policy_device: "cuda",
    policy_use_amp: false,
    optimizer_type: "adam",
    use_policy_training_preset: true,
  });

  const [trainingStatus, setTrainingStatus] = useState<TrainingStatus>({
    training_active: false,
    current_step: 0,
    total_steps: 0,
    available_controls: {
      stop_training: false,
      pause_training: false,
      resume_training: false,
    },
  });

  const [logs, setLogs] = useState<LogEntry[]>([]);
  const [isStartingTraining, setIsStartingTraining] = useState(false);
  const [activeTab, setActiveTab] = useState<"config" | "monitoring">("config");

  // Poll for training status and logs
  useEffect(() => {
    const pollInterval = setInterval(async () => {
      if (trainingStatus.training_active) {
        try {
          // Get status
          const statusResponse = await fetch("/training-status");
          if (statusResponse.ok) {
            const status = await statusResponse.json();
            setTrainingStatus(status);
          }

          // Get logs
          const logsResponse = await fetch("/training-logs");
          if (logsResponse.ok) {
            const logsData = await logsResponse.json();
            if (logsData.logs && logsData.logs.length > 0) {
              setLogs((prevLogs) => [...prevLogs, ...logsData.logs]);
            }
          }
        } catch (error) {
          console.error("Error polling training status:", error);
        }
      }
    }, 1000);

    return () => clearInterval(pollInterval);
  }, [trainingStatus.training_active]);

  // Auto-scroll logs
  useEffect(() => {
    if (logContainerRef.current) {
      logContainerRef.current.scrollTop = logContainerRef.current.scrollHeight;
    }
  }, [logs]);

  const handleStartTraining = async () => {
    if (!trainingConfig.dataset_repo_id.trim()) {
      toast({
        title: "Error",
        description: "Dataset repository ID is required",
        variant: "destructive",
      });
      return;
    }

    setIsStartingTraining(true);
    try {
      const response = await fetch("/start-training", {
        method: "POST",
        headers: {
          "Content-Type": "application/json",
        },
        body: JSON.stringify(trainingConfig),
      });

      if (response.ok) {
        const result = await response.json();
        if (result.success) {
          toast({
            title: "Training Started",
            description: "Training session has been started successfully",
          });
          setActiveTab("monitoring");
          setLogs([]);
        } else {
          toast({
            title: "Error",
            description: result.message || "Failed to start training",
            variant: "destructive",
          });
        }
      } else {
        toast({
          title: "Error",
          description: "Failed to start training",
          variant: "destructive",
        });
      }
    } catch (error) {
      console.error("Error starting training:", error);
      toast({
        title: "Error",
        description: "Failed to start training",
        variant: "destructive",
      });
    } finally {
      setIsStartingTraining(false);
    }
  };

  const handleStopTraining = async () => {
    try {
      const response = await fetch("/stop-training", {
        method: "POST",
      });

      if (response.ok) {
        const result = await response.json();
        if (result.success) {
          toast({
            title: "Training Stopped",
            description: "Training session has been stopped",
          });
        } else {
          toast({
            title: "Error",
            description: result.message || "Failed to stop training",
            variant: "destructive",
          });
        }
      }
    } catch (error) {
      console.error("Error stopping training:", error);
      toast({
        title: "Error",
        description: "Failed to stop training",
        variant: "destructive",
      });
    }
  };

  const updateConfig = <T extends keyof TrainingConfig>(
    key: T,
    value: TrainingConfig[T]
  ) => {
    setTrainingConfig((prev) => ({ ...prev, [key]: value }));
  };

  const formatTime = (seconds: number): string => {
    const hours = Math.floor(seconds / 3600);
    const minutes = Math.floor((seconds % 3600) / 60);
    const secs = Math.floor(seconds % 60);
    return `${hours.toString().padStart(2, "0")}:${minutes
      .toString()
      .padStart(2, "0")}:${secs.toString().padStart(2, "0")}`;
  };

  const getProgressPercentage = () => {
    if (trainingStatus.total_steps === 0) return 0;
    return (trainingStatus.current_step / trainingStatus.total_steps) * 100;
  };

  return (
    <div className="min-h-screen bg-slate-900 text-white p-4">
      <div className="max-w-7xl mx-auto">
        <TrainingHeader trainingStatus={trainingStatus} />
        <TrainingTabs activeTab={activeTab} setActiveTab={setActiveTab} />
        
        {activeTab === "config" && (
          <ConfigurationTab config={trainingConfig} updateConfig={updateConfig} />
        )}

        {activeTab === "monitoring" && (
          <MonitoringTab
            trainingStatus={trainingStatus}
            logs={logs}
            logContainerRef={logContainerRef}
            getProgressPercentage={getProgressPercentage}
            formatTime={formatTime}
          />
        )}
        
        <TrainingControls
          trainingStatus={trainingStatus}
          isStartingTraining={isStartingTraining}
          trainingConfig={trainingConfig}
          handleStartTraining={handleStartTraining}
          handleStopTraining={handleStopTraining}
        />
      </div>
    </div>
  );
};

export default Training;