File size: 12,107 Bytes
9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 00f3401 9f02f73 08c1bd3 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 c50d196 9f02f73 31350b4 9f02f73 31350b4 536effb 9f02f73 160f6d0 9f02f73 31350b4 9f02f73 31350b4 213c70e 9f02f73 31350b4 9f02f73 31350b4 9f02f73 7dc3087 9f02f73 7dc3087 31350b4 213c70e 63b82b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 213c70e 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 213c70e 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 31350b4 9f02f73 00f3401 9f02f73 00f3401 9f02f73 3a82207 9f02f73 3a82207 9f02f73 3a82207 9f02f73 1e9b57f 9f02f73 1e9b57f 9f02f73 1e9b57f 9f02f73 1e9b57f 9f02f73 63b82b4 1e9b57f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
# import gradio as gr
# import torch
# from transformers import (
# AutoModelForCausalLM,
# AutoTokenizer,
# TextIteratorStreamer,
# pipeline
# )
# import os
# from threading import Thread
# import spaces
# import time
# import langchain
# import os
# import glob
# import gc
# # loaders
# from langchain.document_loaders import PyPDFLoader, DirectoryLoader
# # splits
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# # prompts
# from langchain import PromptTemplate
# # vector stores
# from langchain_community.vectorstores import FAISS
# # models
# from langchain.llms import HuggingFacePipeline
# from langchain.embeddings import HuggingFaceInstructEmbeddings
# # retrievers
# from langchain.chains import RetrievalQA
# import subprocess
# subprocess.run(
# "pip install flash-attn --no-build-isolation",
# env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
# shell=True,
# )
# class CFG:
# DEBUG = False
# ### LLM
# model_name = 'justinj92/phi3-orpo'
# temperature = 0.7
# top_p = 0.90
# repetition_penalty = 1.15
# max_len = 8192
# max_new_tokens = 512
# ### splitting
# split_chunk_size = 800
# split_overlap = 400
# ### embeddings
# embeddings_model_repo = 'BAAI/bge-base-en-v1.5'
# ### similar passages
# k = 6
# ### paths
# PDFs_path = './data'
# Embeddings_path = './embeddings/input'
# Output_folder = './ml-papers-vector'
# loader = DirectoryLoader(CFG.PDFs_path, glob="*.pdf", loader_cls=PyPDFLoader)
# documents = loader.load()
# text_splitter = RecursiveCharacterTextSplitter(chunk_size = CFG.split_chunk_size, chunk_overlap = CFG.split_overlap)
# texts = text_splitter.split_documents(documents)
# if not os.path.exists(CFG.Embeddings_path + '/index.faiss'):
# embeddings = HuggingFaceInstructEmbeddings(model_name = CFG.embeddings_model_repo, model_kwargs={"device":"cuda"})
# vectordb = FAISS.from_documents(documents=texts, embedding=embeddings)
# vectordb.save_local(f"{CFG.Output_folder}/faiss_index_ml_papers")
# embeddings = HuggingFaceInstructEmbeddings(model_name = CFG.embeddings_model_repo, model_kwargs={"device":"cuda"})
# vectordb = FAISS.load_local(CFG.Output_folder + '/faiss_index_ml_papers', embeddings, allow_dangerous_deserialization=True)
# def build_model(model_repo = CFG.model_name):
# tokenizer = AutoTokenizer.from_pretrained(model_repo)
# model = AutoModelForCausalLM.from_pretrained(model_repo, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16)
# if torch.cuda.is_available():
# device = torch.device("cuda")
# print(f"Using GPU: {torch.cuda.get_device_name(device)}")
# else:
# device = torch.device("cpu")
# print("Using CPU")
# device = torch.device("cuda")
# model = model.to(device)
# return tokenizer, model
# tok, model = build_model(model_repo = CFG.model_name)
# terminators = [
# tok.eos_token_id,
# 32007,
# 32011,
# 32001,
# 32000
# ]
# pipe = pipeline(task="text-generation", model=model, tokenizer=tok, eos_token_id=terminators, do_sample=True, max_new_tokens=CFG.max_new_tokens, temperature=CFG.temperature, top_p=CFG.top_p, repetition_penalty=CFG.repetition_penalty)
# llm = HuggingFacePipeline(pipeline = pipe)
# prompt_template = """
# <|system|>
# You are an expert assistant that answers questions about machine learning and Large Language Models (LLMs).
# You are given some extracted parts from machine learning papers along with a question.
# If you don't know the answer, just say "I don't know." Don't try to make up an answer.
# It is very important that you ALWAYS answer the question in the same language the question is in. Remember to always do that.
# Use only the following pieces of context to answer the question at the end.
# <|end|>
# <|user|>
# Context: {context}
# Question is below. Remember to answer in the same language:
# Question: {question}
# <|end|>
# <|assistant|>
# """
# PROMPT = PromptTemplate(
# template = prompt_template,
# input_variables = ["context", "question"]
# )
# retriever = vectordb.as_retriever(
# search_type = "similarity",
# search_kwargs = {"k": CFG.k}
# )
# qa_chain = RetrievalQA.from_chain_type(
# llm = llm,
# chain_type = "stuff", # map_reduce, map_rerank, stuff, refine
# retriever = retriever,
# chain_type_kwargs = {"prompt": PROMPT},
# return_source_documents = True,
# verbose = False
# )
# def wrap_text_preserve_newlines(text, width=1500):
# # Split the input text into lines based on newline characters
# lines = text.split('\n')
# # Wrap each line individually
# wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
# # Join the wrapped lines back together using newline characters
# wrapped_text = '\n'.join(wrapped_lines)
# return wrapped_text
# def process_llm_response(llm_response):
# ans = wrap_text_preserve_newlines(llm_response['result'])
# sources_used = ' \n'.join(
# [
# source.metadata['source'].split('/')[-1][:-4]
# + ' - page: '
# + str(source.metadata['page'])
# for source in llm_response['source_documents']
# ]
# )
# ans = ans + '\n\nSources: \n' + sources_used
# ### return only the text after the pattern
# pattern = "<|assistant|>"
# index = ans.find(pattern)
# if index != -1:
# ans = ans[index + len(pattern):]
# return ans.strip()
# @spaces.GPU
# def llm_ans(message, history):
# llm_response = qa_chain.invoke(message)
# ans = process_llm_response(llm_response)
# return ans
# # @spaces.GPU(duration=60)
# # def chat(message, history, temperature, do_sample, max_tokens):
# # chat = [{"role": "system", "content": "You are ORPO Tuned Phi Beast. Answer all questions in the most helpful way. No yapping."}]
# # for item in history:
# # chat.append({"role": "user", "content": item[0]})
# # if item[1] is not None:
# # chat.append({"role": "assistant", "content": item[1]})
# # chat.append({"role": "user", "content": message})
# # messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# # model_inputs = tok([messages], return_tensors="pt").to(device)
# # streamer = TextIteratorStreamer(
# # tok, timeout=20.0, skip_prompt=True, skip_special_tokens=True
# # )
# # generate_kwargs = dict(
# # model_inputs,
# # streamer=streamer,
# # max_new_tokens=max_tokens,
# # do_sample=True,
# # temperature=temperature,
# # eos_token_id=terminators,
# # )
# # if temperature == 0:
# # generate_kwargs["do_sample"] = False
# # t = Thread(target=model.generate, kwargs=generate_kwargs)
# # t.start()
# # partial_text = ""
# # for new_text in streamer:
# # partial_text += new_text
# # yield partial_text
# # yield partial_text
# demo = gr.ChatInterface(
# fn=llm_ans,
# examples=[["Write me a poem about Machine Learning."]],
# # multimodal=False,
# stop_btn="Stop Generation",
# title="Chat With LLMs",
# description="Now Running Phi3-ORPO",
# )
# demo.launch()
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import os
from threading import Thread
import langchain
from langchain.document_loaders import DirectoryLoader, PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain import PromptTemplate
from langchain_community.vectorstores import FAISS
from langchain.llms import HuggingFacePipeline
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.chains import RetrievalQA
import subprocess
import textwrap
# Installation command for specific libraries
subprocess.run("pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True)
class CFG:
DEBUG = False
model_name = 'justinj92/phi3-orpo'
temperature = 0.7
top_p = 0.90
repetition_penalty = 1.15
max_len = 8192
max_new_tokens = 512
split_chunk_size = 800
split_overlap = 400
embeddings_model_repo = 'BAAI/bge-base-en-v1.5'
k = 6
PDFs_path = './data'
Embeddings_path = './embeddings/input'
Output_folder = './ml-papers-vector'
loader = DirectoryLoader(CFG.PDFs_path, glob="*.pdf", loader_cls=PyPDFLoader)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=CFG.split_chunk_size, chunk_overlap=CFG.split_overlap)
texts = text_splitter.split_documents(documents)
if not os.path.exists(f"{CFG.Embeddings_path}/index.faiss"):
embeddings = HuggingFaceInstructEmbeddings(model_name=CFG.embeddings_model_repo, model_kwargs={"device":"cuda"})
vectordb = FAISS.from_documents(documents=texts, embedding=embeddings)
vectordb.save_local(f"{CFG.Output_folder}/faiss_index_ml_papers")
embeddings = HuggingFaceInstructEmbeddings(model_name=CFG.embeddings_model_repo, model_kwargs={"device":"cuda"})
vectordb = FAISS.load_local(f"{CFG.Output_folder}/faiss_index_ml_papers", embeddings, allow_dangerous_deserialization=True)
def build_model(model_repo=CFG.model_name):
tokenizer = AutoTokenizer.from_pretrained(model_repo)
model = AutoModelForCausalLM.from_pretrained(model_repo, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
return tokenizer, model
tok, model = build_model()
terminators = [tok.eos_token_id, 32007, 32011, 32001, 32000]
pipe = pipeline(task="text-generation", model=model, tokenizer=tok, eos_token_id=terminators, do_sample=True, max_new_tokens=CFG.max_new_tokens, temperature=CFG.temperature, top_p=CFG.top_p, repetition_penalty=CFG.repetition_penalty)
llm = HuggingFacePipeline(pipeline=pipe)
prompt_template = """
You are an expert assistant that answers questions about machine learning and Large Language Models (LLMs).
You are given some extracted parts from machine learning papers along with a question.
If you don't know the answer, just say "I don't know." Don't try to make up an answer.
It is very important that you ALWAYS answer the question in the same language the question is in. Remember to always do that.
Use only the following pieces of context to answer the question at the end.
Context: {context}
Question is below. Remember to answer in the same language:
Question: {question}
"""
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
retriever = vectordb.as_retriever(search_type="similarity", search_kwargs={"k": CFG.k})
def process_llm_response(llm_response):
ans = textwrap.fill(llm_response['result'], width=1500)
sources_used = ' \n'.join([f"{source.metadata['source'].split('/')[-1][:-4]} - page: {str(source.metadata['page'])}" for source in llm_response['source_documents']])
return f"{ans}\n\nSources:\n{sources_used}"
@spaces.GPU
def llm_ans(message, history):
tok, model = build_model()
terminators = [tok.eos_token_id, 32007, 32011, 32001, 32000]
pipe = pipeline(task="text-generation", model=model, tokenizer=tok, eos_token_id=terminators, do_sample=True, max_new_tokens=CFG.max_new_tokens, temperature=CFG.temperature, top_p=CFG.top_p, repetition_penalty=CFG.repetition_penalty)
llm = HuggingFacePipeline(pipeline=pipe)
qa_chain = RetrievalQA(llm=llm, retriever=retriever, prompt_template=PROMPT, return_source_documents=True, verbose=False)
llm_response = qa_chain.invoke(message)
return process_llm_response(llm_response)
demo = gr.ChatInterface(
fn=llm_ans,
examples=[["Write me a poem about Machine Learning."]],
# multimodal=False,
stop_btn="Stop Generation",
title="Chat With LLMs",
description="Now Running Phi3-ORPO",
)
demo.launch()
|