
In Neural Computation, 3, pages 79-87.

Adaptive Mixtures of Local Experts

Robert A. Jacobs
Michael I. Jordan

Department of Brain & Cognitive Sciences
Massachusetts Institute of Technology

Cambridge, MA 02139

Steven J. Nowlan
Geoffrey E. Hinton

Department of Computer Science
University of Toronto

Toronto, Canada M5S 1A4

Abstract

We present a new supervised learning procedure for systems composed of many separate
networks, each of which learns to handle a subset of the complete set of training cases.
The new procedure can be viewed either as a modular version of a multilayer supervised
network, or as an associative version of competitive learning. It therefore provides a new
link between these two apparently different approaches. We demonstrate that the learning
procedure divides up a vowel discrimination task into appropriate subtasks, each of which
can be solved by a very simple expert network.

1 Making associative learning competitive

If backpropagation is used to train a single, multilayer network to perform different subtasks
on different occasions, there will generally be strong interference effects which lead to slow
learning and poor generalization. If we know in advance that a set of training cases may
be naturally divided into subsets that correspond to distinct subtasks, interference can be
reduced by using a system composed of several different “expert” networks plus a gating
network that decides which of the experts should be used for each training case. 1 Hampshire

1This idea was first presented by Jacobs and Hinton at the Connectionist Summer School in Pittsburgh

in 1988.

1



and Waibel (1989) have described a system of this kind that can be used when the division
into subtasks is known prior to training, and Jacobs, Jordan and Barto (1990) have described
a related system that learns how to allocate cases to experts. The idea behind such a system
is that the gating network allocates a new case to one or a few experts, and, if the output is
incorrect, the weight changes are localized to these experts (and the gating network). So there
is no interference with the weights of other experts that specialize in quite different cases.
The experts are therefore local in the sense that the weights in one expert are decoupled
from the weights in other experts. In addition they will often be local in the sense that each
expert will be allocated to only a small local region of the space of possible input vectors.

Unfortunately, both Hampshire and Waibel and Jacobs et al. use an error function which
does not encourage localization. They assume that the final output of the whole system is a
linear combination of the outputs of the local experts, with the gating network determining
the proportion of each local output in the linear combination. So the final error on case c is

Ec = ‖~dc −
∑

i

pc
i~o

c
i ‖

2 (1)

where ~o c
i is the output vector of expert i on case c, pc

i is the proportional contribution of

expert i to the combined output vector, and ~dc is the desired output vector in case c.

This error measure compares the desired output with a blend of the outputs of the local
experts, so, to minimize the error, each local expert must make its output cancel the residual
error that is left by the combined effects of all the other experts. When the weights in one
expert change, the residual error changes, and so the error derivatives for all the other local
experts change. 2 This strong coupling between the experts causes them to cooperate nicely,
but tends to lead to solutions in which many experts are used for each case. It is possible
to encourage competition by adding penalty terms to the objective function to encourage
solutions in which only one expert is active (Jacobs, Jordan, and Barto, 1990), but a simpler
remedy is to redefine the error function so that the local experts are encouraged to compete
rather than cooperate.

Instead of linearly combining the outputs of the separate experts, we imagine that the
gating network makes a stochastic decision about which single expert to use on each occasion
(see figure 1). The error is then the expected value of the squared difference between the
desired and actual output vectors

2For Hampshire and Waibel, this problem does not arise because they do not learn the task decomposition.

They train each expert separately on its own pre-assigned subtask.

2



Figure 1: A system of expert and gating networks. Each expert is a feedforward network
and all experts receive the same input and have the same number of outputs. The gating
network is also feedforward and typically receives the same input as the expert networks.
It has normalized outputs pj = exp(xj)/

∑

i exp(xi), where xj is the total weighted input
received by output unit j of the gating network. The selector acts like a multiple input,
single output stochastic switch; the probability that the switch will select the output from
expert j is pj.

Ec = <‖~dc − ~o c
i ‖

2> =
∑

i

pc
i‖

~dc − ~o c
i ‖

2 (2)

3



Notice that in this new error function, each expert is required to produce the whole of
the output vector rather than a residual. As a result, the goal of a local expert on a given
training case is not directly affected by the weights within other local experts. There is still
some indirect coupling because if some other expert changes its weights, it may cause the
gating network to alter the responsibilities that get assigned to the experts, but at least
these responsibility changes cannot alter the sign of the error that a local expert senses
on a given training case. If both the gating network and the local experts are trained by
gradient descent in this new error function, the system tends to devote a single expert to
each training case. Whenever an expert gives less error than the weighted average of the
errors of all the experts (using the outputs of the gating network to decide how to weight
each expert’s error) its responsibility for that case will be increased, and whenever it does
worse than the weighted average its responsibility will be decreased.

The error function in equation 2 works in practice but in the simulations reported below
we used a different error function which gives better performance:

Ec = − log
∑

i

pc
ie

− 1

2
‖~dc−~o c

i
‖2

(3)

The error defined in equation 3 is simply the negative log probability of generating the
desired output vector under the mixture of gaussians model described at the end of the next
section. To see why this error function works better, it is helpful to compare the derivatives
of the two error functions with respect to the output of an expert. From equation 2 we get

∂Ec

∂~o c
i

= −2pc
i(

~dc − ~o c
i ) (4)

while from equation 3 we get

∂Ec

∂~o c
i

= −





pc
ie

− 1

2
‖~dc−~o c

i
‖2

∑

j pc
je

− 1

2
‖~dc−~o c

j
‖2



 (~dc − ~o c
i ) (5)

In equation 4 the term pc
i is used to weight the derivative for expert i. In equation 5 we use

a weighting term that takes into account how well expert i does relative to other experts.
This is a more useful measure of the relevance of expert i to training case c, especially early
in the training. Suppose, for example, that the gating network initially gives equal weights
to all experts and ‖~dc − ~o c

i ‖ > 1 for all the experts. Equation 4 will adapt the best-fitting
expert the slowest, whereas equation 5 will adapt it the fastest.

4



2 Making competitive learning associative

It is natural to think that the “data” vectors on which a competitive network is trained
play a role similar to the input vectors of an associative network that maps input vectors
to output vectors. This correspondence is assumed in models that use competitive learning
as a preprocessing stage within an associative network (Moody and Darken, 1989). A quite
different view is that the data vectors used in competitive learning correspond to the out-

put vectors of an associative network. The competitive network can then be viewed as an
inputless stochastic generator of output vectors and competitive learning can be viewed as a
procedure for making the network generate output vectors with a distribution that matches
the distribution of the “data” vectors. The weight vector of each competitive hidden unit
represents the mean of a multidimensional gaussian distribution, and output vectors are
generated by first picking a hidden unit and then picking an output vector from the gaussian
distribution determined by the weight vector of the chosen hidden unit. The log probability
of generating any particular output vector ~oc is then

log P c = log
∑

i

pike−
1

2
‖~µi−~oc‖2

(6)

where i is an index over the hidden units, ~µi is the “weight” vector of the hidden unit, k
is a normalizing constant, and pi is the probability of picking hidden unit i, so the pi are
constrained to sum to 1. In the statistics literature (McLachlan and Basford, 1988), the pi

are called “mixing proportions”.

“Soft” competitive learning modifies the weights (and also the variances and the mixing
proportions) so as to increase the product of the probabilities (i.e. the likelihood) of gener-
ating the output vectors in the training set (Nowlan, 1990). “Hard” competitive learning is
a simple approximation to soft competitive learning in which we ignore the possibility that
a data vector could be generated by several different hidden units. Instead, we assume that
it must be generated by the hidden unit with the closest weight vector, so only this weight
vector needs to be modified to increase the probability of generating the data vector.

If we view a competitive network as generating output vectors, it is not immediately
obvious what role input vectors could play. However, competitive learning can be generalized
in much the same way as Barto (1985) has generalized learning automata by adding an
input vector and making the actions of the automaton be conditional on the input vector.
We replace each hidden unit in a competitive network by an entire expert network whose
output vector specifies the mean of a multidimensional gaussian distribution. So the means

5



are now a function of the current input vector and are represented by activity levels rather
than weights. In addition, we use a gating network which allows the mixing proportions of
the experts to be determined by the input vector. This gives us a system of competing local
experts with the error function defined in equation 3. We could also introduce a mechanism
to allow the input vector to dynamically determine the covariance matrix for the distribution
defined by each expert network, but we have not yet experimented with this possibility.

3 Application to multi-speaker vowel recognition

The mixture of experts model was evaluated on a speaker independent, four-class, vowel
discrimination problem. The data consisted of the first and second formants of the vowels [i],
[I], [a], and [A] (usually denoted [Λ]) from 75 speakers (males, females and children) uttered
in a hVd context (Peterson & Barney, 1952). The data forms two pairs of overlapping
classes, and different experts learn to concentrate on one pair of classes or the other (figure
2).

We compared standard back-propagation networks containing a single hidden layer of 6
or 12 units with mixtures of 4 or 8 very simple experts. The architecture of each expert
was restricted so it could form only a linear decision surface which is defined as the set of
input vectors for which the expert gives an output of exactly 0.5. All models were trained
with data from the first 50 speakers and tested with data from the remaining 25 speakers.
The small number of parameters for each expert allows excellent generalization performance
(table 1), and permits a graphical representation of the process of task decomposition (figure
3). The number of hidden units in the back propagation networks was chosen to give roughly
equal numbers of parameters for the back propagation networks and mixture models. All
simulations were performed using a simple gradient descent algorithm with fixed step size ε.
To simplify the comparisons, no momentum or other acceleration techniques were used. The
value of ε for each system was chosen by performing a limited exploration of the convergence
from the same initial conditions for a range of ε. Batch training was used with one weight
update for each pass through the training set (epoch). Each system was trained until an
average squared error of 0.08 over the training set was obtained.

The mixtures of experts reach the error criterion significantly faster than the back-
propagation networks (p � 0.999), requiring only about half as many epochs on average
(table 1). The learning time for the mixture model also scales well as the number of experts
is increased: The mixture of 8 experts has a small, but statistically significant (p > 0.95),
advantage in the average number of epochs required to reach the error criterion. In contrast,

6



Figure 2: Data for vowel discrimination problem, and expert and gating network decision
lines. The horizontal axis is the first formant value, and the vertical axis is the second
formant value (the formant values have been linearly scaled by dividing by a factor of 1000).
Each example is labelled with its corresponding vowel symbol. Vowels [i] and [I] form one
overlapping pair of classes, vowels [a] and [A] form the other pair. The lines labelled Net
0, 1 and 2 represent the decision lines for 3 expert networks. On one side of these lines the
output of the corresponding expert is less than 0.5, on the other side the output is greater
than 0.5. Although the mixture in this case contained 4 experts, one of these experts made
no significant contribution to the final mixture since its mixing proportion pi was effectively
0 for all cases. The line labelled Gate 0:2 indicates the decision between expert 0 and expert
2 made by the gating network. To the left of this line p2 > p0, to the right of this line
p0 > p2. The boundary between classes [a] and [A] is formed by the combination of the left
part of Net 2’s decision line and the right part of Net 0’s decision line. Although the system
tends to use as few experts as it can to solve a problem, it is also sensitive to specific problem
features such as the slightly curved boundary between classes [a] and [A].

7



System Train % Correct Test % Correct Avg. # Epochs Std. Dev.
4 Experts 88 90 1124 23
8 Experts 88 90 1083 12
BP 6 Hid 88 90 2209 83
BP 12 Hid 88 90 2435 124

Table 1: Summary of performance on vowel discrimination task. Results are based on 25
simulations for each of the alternative models. The first column of the table indicates the
system simulated. The second column gives the percent of training cases classified correctly
by the final set of weights, while the third column indicates the percent of testing cases
classified correctly. The last two columns contain the average number of epochs required
to reach the error criterion, and the standard deviation of the distribution of convergence
times. Although the squared error was used to decide when to stop training, the criterion
for correct performance is based on a weighted average of the outputs of all the experts.
Each expert assigns a probability distribution over the classes and these distributions are
combined using proportions given by the gating network. The most probable class is then
taken to be the response of the system. The identical performance of all the systems is due
to the fact that, with this dataset, the set of misclassified examples is not sensitive to small
changes in the decision surfaces. Also, the test set is easier than the training set.

8



Figure 3: The trajectories of the decision lines of some experts during one simulation. The
horizontal axis is the first formant value, and the vertical axis is the second formant value.
Each trajectory is represented by a sequence of dots, one per epoch, each dot marking the
intersection of the expert’s decision line and the normal to that line passing through the
origin. For clarity, only 5 of the 8 experts are shown and the number of the expert is shown
at the start of the trajectory. The point labelled T0 indicates the optimal decision line for a
single expert trained to discriminate [i] from [I]. Similarly, T1 represents the optimal decision
line to discriminate [a] from [A]. The point labelled X is the decision line learned by a single
expert trained with data from all 4 classes, and represents a type of average solution.

the 12 hidden unit back-propagation network requires more epochs (p > 0.95) to reach the
error criterion than the network with 6 hidden units (table 1). All statistical comparisons
are based on a t-test with 48 degrees of freedom and a pooled variance estimator.

Figure 3 shows how the decision lines of different experts move around as the system
learns to allocate pieces of the task to different experts. The system begins in an unbiased
state, with the gating network assigning equal mixing proportions to all experts in all cases.
As a result, each expert tends to get errors from roughly equal numbers of cases in all 4
classes, and all experts head towards the point X, which represents the optimal decision
line for an expert that must deal with all the cases. Once one or more experts begin to
receive more error from cases in one class pair than the other, this symmetry is broken and

9



the trajectories begin to diverge as different experts concentrate on one class pair or the
other. In this simulation, expert 5 learns to concentrate on discriminating classes [i] and
[I] so its decision line approaches the optimal line for this discrimination (T0). Experts 4
and 6 both concentrate on discriminating classes [a] and [A], so their trajectories approach
the optimal single line (T1) and then split to form a piecewise linear approximation to the
slightly curved optimal decision surface (see figure 2). Only experts 4, 5, and 6 are active in
the final mixture. This solution is typical – in all simulations with mixtures of 4 or 8 experts
all but 2 or 3 experts had mixing proportions that were effectively 0 for all cases.

10



Acknowledgements

Jordan and Jacobs were funded by grants from Siemens and the McDonnell-Pew program
in Cognitive Neuroscience. Hinton and Nowlan were funded by grants from the Ontario
Information Technology Research Center and the Canadian Natural Science and Engineering
Research Council. Hinton is a fellow of the Canadian Institute for Advanced Research.

References

Barto, A. G. (1985) Learning by statistical cooperation of self-interested neuron-like com-
puting elements. Human Neurobiology, 4:229–256.

Hampshire, J. and Waibel, A. (1989) The Meta-Pi network: Building distributed knowledge

representations for robust pattern recognition, Technical Report CMU-CS-89-166, Carnegie
Mellon University, Pittsburgh, PA.

Jacobs, R.A. & Jordan, M.I. (1991) Learning piecewise control strategies in a modular con-
nectionist architecture, in preparation.

Jacobs, R. A., Jordan, M. I. and Barto, A. G. (1991) Task decomposition through compe-
tition in a modular connectionist architecture: The what and where vision tasks. Cognitive

Science, in press.

McLachlan, G. J. and Basford, K. E. (1988) Mixture models: Inference and applications to

clustering. Marcel Dekker, Inc.

Moody, J. and Darken, C. (1989) Fast learning in networks of locally-tuned processing units.
Neural Computation, 1(2):281–294.

Nowlan, S. J. (1990) Maximum Likelihood Competitive Learning. In D. S. Touretzky (ed.),
Advances in Neural Information Processing Systems 2, pp. 574-582. San Mateo, CA: Morgan
Kaufmann.

Nowlan, S. J. (1990) Competing experts: An experimental investigation of associative mix-
ture models. Technical Report CRG-TR-90-5, University of Toronto, Toronto, Canada.

Peterson, G. E. and Barney, H. L. (1952) Control Methods Used in a Study of the Vowels,
J. Acoust. Soc. Am., vol. 24, pp. 175-184.

11


