File size: 5,501 Bytes
4c0593e
09b2769
15f66cd
61ba593
 
 
d521dce
 
 
 
378c937
61ba593
 
15f66cd
8414736
 
 
 
 
 
1dc0a7f
d521dce
09b2769
1dc0a7f
752ce9b
 
 
d521dce
db6e0bb
15f66cd
1dc0a7f
d521dce
1dc0a7f
15f66cd
 
 
1dc0a7f
61ba593
 
4c0593e
61ba593
 
 
 
 
db6e0bb
1dc0a7f
09b2769
15f66cd
 
 
 
09b2769
 
 
1dc0a7f
d521dce
15f66cd
 
 
8414736
d521dce
 
15f66cd
 
d521dce
15f66cd
 
 
 
 
d521dce
15f66cd
d521dce
 
bb8566e
1dc0a7f
752ce9b
4c0593e
15f66cd
4c0593e
 
1dc0a7f
 
 
 
752ce9b
15f66cd
1dc0a7f
09b2769
 
1dc0a7f
 
15f66cd
 
 
 
 
09b2769
1dc0a7f
 
 
 
 
 
15f66cd
1dc0a7f
 
09b2769
15f66cd
1dc0a7f
 
 
15f66cd
1dc0a7f
 
09b2769
15f66cd
1dc0a7f
 
 
15f66cd
1dc0a7f
 
4c0593e
15f66cd
1dc0a7f
 
752ce9b
4c0593e
752ce9b
15f66cd
 
 
 
 
4c0593e
d521dce
 
 
 
 
 
 
15f66cd
 
8414736
d521dce
1dc0a7f
bb8566e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import gradio as gr
from processing import run
import json         # is only used if hf_login() is used
from huggingface_hub import login
import os




# LOG INTO HUGGING FACE
hf_token = os.getenv("HF_Token")
login(hf_token)

# I have used this function for logging into HF using a credentials file
# def hf_login():
#     hf_token = os.getenv("HF_Token")
#     if hf_token is None:
#         with open("credentials.json", "r") as f:
#             hf_token = json.load(f)["token"]
#     login(token=hf_token, add_to_git_credential=True)

# hf_login()





# GENERAL OPTIONS FOR MODELS AND DATASETS
MODEL_OPTIONS = ["openai/whisper-tiny.en", "facebook/s2t-medium-librispeech-asr", "facebook/wav2vec2-base-960h","openai/whisper-large-v2","facebook/hf-seamless-m4t-medium"]
DATASET_OPTIONS = ["Common Voice", "Librispeech ASR clean", "Librispeech ASR other", "OWN Recording/Sample"]

# HELPER FUNCTIONS
def get_card(selected_model:str)->str:
    """
    This function retrieves the markdown text displayed for each selected Model
    """

    with open("cards.txt", "r") as f:
        cards = f.read()
    
    cards = cards.split("@@")
    for card in cards:
        if "ID: "+selected_model in card:
            return card

    return "## Unknown Model"

def is_own(selected_option):
    """
    In case the User wants to record an own Sample, this function makes the Components visible
    """
    if selected_option == "OWN Recording/Sample":
        return gr.update(visible=True), gr.update(visible=True)
    else:
        return gr.update(visible=False), gr.update(visible=False)

def make_visible():
    """
    This function makes the Components needed for displaying the Results visible
    """
    return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)


# Introduction and Information about the APP
INTRODUCTION = """### Welcome to ASR Model Comparison Hub! 🎉

Hey there, and welcome to an app designed just for developers like you, who are passionate about pushing the boundaries of Automatic Speech Recognition (ASR) technology!

Here, you can easily compare different ASR models by selecting a dataset and choosing two models from the dropdown to see how they stack up against each other. If you're feeling creative, go ahead and select 'OWN' as your dataset option to upload your own audio file or record something new right in the app. Don’t forget to provide a transcription, and the app will handle the rest!

ASR Model Comparison Hub uses the Word Error Rate (WER) ⬇️ (the lower the better) metric to give you a clear picture of each model's performance. And hey, don't miss out on checking the **Amazing Leaderboard** where you can see how a wide range of models have been evaluated—[Check it out here](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard).

Happy experimenting and comparing! 🚀"""

# THE ACTUAL APP
with gr.Blocks() as demo:


    gr.Markdown('# <p style="text-align: center;">ASR Model Comparison 💬</p>')
    gr.Markdown(INTRODUCTION)

    

    with gr.Row():
        with gr.Column(scale=1):
            pass
        with gr.Column(scale=5):
            # Select a Dataset to evaluate the Models on
            data_subset = gr.Radio(
                value="Common Voice",
                choices=DATASET_OPTIONS,
                label="Data subset / Own Sample",
            )
            # Components used to record an own sample
            own_audio = gr.Audio(sources=['microphone'], visible=False, label=None)
            own_transcription = gr.TextArea(lines=2, visible=False, label=None)

            # Event Listiner to display the correct components
            data_subset.change(is_own, inputs=[data_subset], outputs=[own_audio, own_transcription])
        with gr.Column(scale=1):
            pass


    with gr.Row():

        # This Column is for selecting the First Model
        with gr.Column(scale=1):
            model_1 = gr.Dropdown(
                choices=MODEL_OPTIONS,
                label=None
            )
            model_1_card = gr.Markdown("")

        # This Columnis for selecting the Second Model
        with gr.Column(scale=1):
            model_2 = gr.Dropdown(
                choices=MODEL_OPTIONS,
                label=None
            )
            model_2_card = gr.Markdown("")

        # Event Listiners if a model has been selected
        model_1.change(get_card, inputs=model_1, outputs=model_1_card)
        model_2.change(get_card, inputs=model_2, outputs=model_2_card)

    # Main Action Button to start the Evaluation
    eval_btn = gr.Button(
        value="Evaluate",
        variant="primary",
        size="sm")
    
    # This Section Displays the Evaluation Results
    results_title = gr.Markdown(
        '## <p style="text-align: center;">Results</p>', 
        visible=False
    )
    results_md = gr.Markdown("")
    results_plot = gr.Plot(show_label=False, visible=False)
    results_df = gr.DataFrame(
        visible=False,
        row_count=(5, "dynamic"),  # Allow dynamic rows
        interactive=False,  # Allow users to interact with the DataFrame
        wrap=True,  # Ensure text wraps to multiple lines
    )

    # Event Listeners if the main aaction button has been trigered
    eval_btn.click(make_visible, outputs=[results_plot, results_df, results_title])
    eval_btn.click(run, [data_subset, model_1, model_2, own_audio, own_transcription], [results_md, results_plot, results_df], show_progress=False)

demo.launch(debug=True)