Spaces:
Sleeping
Sleeping
import gradio as gr | |
# from gradio import ChatMessage | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
import numpy as np | |
import librosa | |
import random | |
import json | |
import os | |
from huggingface_hub import InferenceClient | |
hf_token = os.getenv("HF_Token") | |
# def get_token(): | |
# with open("credentials.json","r") as f: | |
# credentials = json.load(f) | |
# return credentials['token'] | |
# hf_token = get_token() | |
words_to_guess = [ | |
"elephant", | |
"rainbow", | |
"mountain", | |
"ocean", | |
"butterfly", | |
"guitar", | |
"volcano", | |
"chocolate", | |
"kangaroo", | |
"spaceship", | |
"whisper", | |
"pyramid", | |
"sunflower", | |
"unicorn", | |
"jungle", | |
"diamond", | |
"castle", | |
"galaxy", | |
"wizard", | |
"tornado" | |
] | |
RANDOM_WORD = random.choice(words_to_guess) | |
client = InferenceClient( | |
"meta-llama/Meta-Llama-3-8B-Instruct", | |
token=hf_token) | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") | |
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") | |
def chat(audio, chat:list, asr_model:str): | |
status = "" | |
if asr_model == "openai/whisper-large-v2": | |
transcription = transcribe_whisper_large_v2(audio) | |
elif asr_model == "openai/whisper-tiny.en": | |
transcription = transcribe_whisper_tiny_en(audio) | |
else: | |
raise ValueError(f"No Model found with the given choice: {asr_model}") | |
if RANDOM_WORD in transcription: | |
status = f"""# YOU WON !! ππ | |
The Word was: {RANDOM_WORD} | |
""" | |
chat.append({'role':'user','content':transcription}) | |
response = client.chat_completion( | |
messages=chat, | |
max_tokens=500, | |
stream=False, | |
).choices[0].message.content | |
chat.append({'role':'assistant','content':response}) | |
if RANDOM_WORD in response: | |
status = f"""# YOU LOST !! ββ | |
The Word was: {RANDOM_WORD} | |
""" | |
return chat, status | |
def transcribe_whisper_large_v2(audio): | |
sr, audio = audio | |
audio = audio.astype(np.float32) | |
if len(audio.shape) > 2 and audio.shape[1] > 1: | |
audio = np.mean(audio, axis=1) | |
audio = librosa.resample(audio, orig_sr=sr, target_sr=16000) | |
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features | |
predicted_ids = model.generate(input_features) | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) | |
transcription = processor.tokenizer.normalize(transcription[0]) | |
return transcription | |
def transcribe_whisper_tiny_en(audio): | |
sr, audio = audio | |
audio = audio.astype(np.float32) | |
if len(audio.shape) > 2 and audio.shape[1] > 1: | |
audio = np.mean(audio, axis=1) | |
audio = librosa.resample(audio, orig_sr=sr, target_sr=16000) | |
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features | |
predicted_ids = model.generate(input_features) | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
transcription = processor.tokenizer.normalize(transcription[0]) | |
return transcription | |
def load_model(asr_model_choice:str): | |
global processor | |
global model | |
global model_flag | |
if asr_model_choice == "openai/whisper-large-v2": | |
processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2") | |
model.config.forced_decoder_ids = None | |
model_flag = "openai/whisper-large-v2" | |
elif asr_model_choice == "openai/whisper-tiny.en": | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") | |
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") | |
model_flag = "openai/whisper-tiny.en" | |
print("Model Loaded: ",model_flag) | |
# The App | |
with gr.Blocks() as app: | |
gr.Markdown("# VoiceBot Game πΉοΈ") | |
gr.Markdown("Welcome to VoiceBot π, here is how it works") | |
gr.Markdown("This Bot can only be interacted with through your voice. Press record and say something, after stopping the recoding your audio will be processed directly. You have the option to choose between different models. The model you choose influences the Bot's perfomance to understand what you have said. A better perfomance also comes with longer waiting time. π") | |
gr.Markdown("The Game works as follows: The Bot get's an initial word, you have to guess it. You can ask questions. If the bot says the word before you, You Lose! If you say the word first you Win!") | |
gr.Markdown("Have fun playing arround π") | |
gr.Markdown("If you have any wishes for models or a general idea, feel free to let me know π") | |
chatbot = gr.Chatbot( | |
value=[{ | |
'role':'System', | |
'content':f"The User tries to guess a word. The User asks you questions about the word and you answer those questions. Try to help the user to find the word by giving very short descriptions. THE WORD TO GUESS IS: {RANDOM_WORD}" | |
}], | |
bubble_full_width=False, | |
type="messages" | |
) | |
audio_input = gr.Audio( | |
sources=['microphone'], | |
interactive=True, | |
scale=8 | |
) | |
status = gr.Markdown() | |
with gr.Accordion(label="Settings", open=False): | |
asr_model_choice = gr.Radio( | |
label="Select ASR Model", | |
choices=["openai/whisper-large-v2","openai/whisper-tiny.en"], | |
value="openai/whisper-tiny.en" | |
) | |
asr_model_choice.change(load_model, asr_model_choice) | |
# Event listener for when the audio recording stops | |
audio_input.stop_recording(fn=chat, inputs=[audio_input, chatbot, asr_model_choice], outputs=[chatbot, status]) | |
app.launch() |