Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -21,7 +21,6 @@ data_normalized = scaler.fit_transform(data.reshape(-1, 1))
|
|
21 |
|
22 |
seq_length = 4
|
23 |
|
24 |
-
|
25 |
class LSTM(nn.Module):
|
26 |
def __init__(self, input_size=INPUT_SIZE, hidden_layer_size=HIDDEN_LAYER_SIZE, output_size=OUTPUT_SIZE):
|
27 |
super(LSTM, self).__init__()
|
@@ -36,14 +35,17 @@ class LSTM(nn.Module):
|
|
36 |
predictions = self.linear(lstm_out.view(len(input_seq), -1))
|
37 |
return predictions[-1]
|
38 |
|
39 |
-
with open('LSTM_MODEL.pkl', 'rb') as f:
|
40 |
-
model = pickle.load(f)
|
41 |
-
|
42 |
def prepare_custom_input(last_values, seq_length, scaler):
|
43 |
last_values_normalized = scaler.transform(np.array(last_values).reshape(-1, 1))
|
44 |
input_seq = torch.from_numpy(last_values_normalized).float()
|
45 |
return input_seq.view(-1)
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
model.eval()
|
48 |
|
49 |
def predict_and_plot(week1, week2, week3, week4):
|
|
|
21 |
|
22 |
seq_length = 4
|
23 |
|
|
|
24 |
class LSTM(nn.Module):
|
25 |
def __init__(self, input_size=INPUT_SIZE, hidden_layer_size=HIDDEN_LAYER_SIZE, output_size=OUTPUT_SIZE):
|
26 |
super(LSTM, self).__init__()
|
|
|
35 |
predictions = self.linear(lstm_out.view(len(input_seq), -1))
|
36 |
return predictions[-1]
|
37 |
|
|
|
|
|
|
|
38 |
def prepare_custom_input(last_values, seq_length, scaler):
|
39 |
last_values_normalized = scaler.transform(np.array(last_values).reshape(-1, 1))
|
40 |
input_seq = torch.from_numpy(last_values_normalized).float()
|
41 |
return input_seq.view(-1)
|
42 |
|
43 |
+
model_path = 'lstm_model.pth'
|
44 |
+
|
45 |
+
model = LSTMModel(INPUT_SIZE, HIDDEN_LAYER_SIZE, OUTPUT_SIZE)
|
46 |
+
|
47 |
+
model.load_state_dict(torch.load(model_path))
|
48 |
+
|
49 |
model.eval()
|
50 |
|
51 |
def predict_and_plot(week1, week2, week3, week4):
|