File size: 9,039 Bytes
9d21d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46dec79
 
 
 
 
 
9d21d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4a8940
9d21d47
 
 
 
 
d4a8940
 
 
 
 
 
 
9d21d47
d4a8940
9d21d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4a8940
 
 
 
9d21d47
 
 
 
 
 
 
 
 
 
d4a8940
9d21d47
 
 
 
 
 
 
 
 
 
 
f5be2dd
 
 
 
 
 
 
9d21d47
 
 
 
 
 
d4a8940
 
 
 
 
 
 
9d21d47
d4a8940
 
 
 
 
 
 
 
 
 
 
 
 
9d21d47
 
 
 
 
d4a8940
 
 
 
46dec79
d4a8940
 
 
 
9d21d47
 
 
d4a8940
 
 
 
 
 
 
9d21d47
 
 
 
 
d4a8940
 
9d21d47
 
 
 
d4a8940
46dec79
9d21d47
d4a8940
9d21d47
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import json
from pathlib import Path

import gradio as gr

import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader

from common import setup_cpu
from models import build_tokenizer, build_model
from models.meta_optimizer import AttnOptimWrapper
from tasks import load_task
from tasks.loader import TokenizedForMCRightPad

DISPLAY_MAPPING = {
    "sst2": {"positive": "Pos", "negative": "Neg"},
}


@torch.no_grad()
def do_infer_probs(model, exemplar_attn_kv, exemplar_attn_mask, batched_choices_input):
    batched_choices_logprobs = []
    for batched_one_choice_input in batched_choices_input:
        (
            batch_input_ids,
            batch_attention_mask,
            batch_choice_start,
            batch_choice_end,
        ) = batched_one_choice_input
        bs = len(batch_input_ids)

        merged_attn_mask = torch.cat((exemplar_attn_mask.expand(bs, -1), batch_attention_mask), dim=1)
        # [B, #Heads, Length, Hidden]
        expand_exemplar_attn_kv = [[layer_k.expand((bs, -1, -1, -1)), layer_v.expand((bs, -1, -1, -1))] for layer_k, layer_v in exemplar_attn_kv]

        batched_logits = model(
            input_ids=batch_input_ids,  # [B, L']
            attention_mask=merged_attn_mask,  # [B, L + L']
            past_key_values=expand_exemplar_attn_kv,  # num_layers * 2 * [B, num_heads, L, H]
        ).logits
        batched_output = F.log_softmax(batched_logits, dim=-1)  # [B, L', Vocab]

        batched_one_choice_logprobs = []
        for input_ids, choice_start, choice_end, lm_logprobs in zip(batch_input_ids, batch_choice_start, batch_choice_end, batched_output):
            choice_tokens = input_ids[choice_start:choice_end].unsqueeze(1)  # [L, 1]
            choice_logprobs = lm_logprobs[choice_start - 1 : choice_end - 1]  # [L, Vocab]

            extracted = torch.gather(choice_logprobs, -1, choice_tokens).squeeze(-1)

            choice_length = choice_end - choice_start
            lm_log_p = torch.sum(extracted).item()
            norm_lm_log_p = (lm_log_p / choice_length).item()

            choice_lm_info = {"lm_log_p": lm_log_p, "norm_lm_log_p": norm_lm_log_p}
            batched_one_choice_logprobs.append(choice_lm_info)
        batched_choices_logprobs.append(batched_one_choice_logprobs)
    return batched_choices_logprobs


@torch.no_grad()
def process_once(dataset_name, exemplar_str, forward_steps, raw_data):
    setup_cpu(seed=seed)
    TaskHandler = load_task(dataset_name)
    task_agent = TaskHandler(prompt_version)

    processed_data = task_agent.dataset_preprocess(raw_data)
    dataset = TokenizedForMCRightPad(processed_data, tokenizer, task_agent.multiple_choice_promptify)

    exemplar_input_ids, exemplar_attn_mask = dataset.tokenize_demonstration(exemplar_str)
    loader = DataLoader(dataset, shuffle=False, drop_last=False, batch_size=1)
    meta_optim = AttnOptimWrapper(model, model_name, step_size=step_size, momentum=momentum)
    meta_optim.init()

    for _ in range(forward_steps):
        exemplar_kv = meta_optim.step(exemplar_input_ids)

    generated_info = []  # question * [choice0_prob, choice1_prob]
    for batch_input in loader:
        batch_output = do_infer_probs(model, exemplar_kv, exemplar_attn_mask.unsqueeze(0), batch_input)  # [batch_of_choice0, batch_of_choice1, ...]
        zipped_logprobs = list(zip(*batch_output))  # batch * (choice0, choice1, ...)
        generated_info.extend(zipped_logprobs)

    all_predicted = []
    num_correct = 0
    for idx, (data, choice_info) in enumerate(zip(processed_data, generated_info)):
        merged_choice_info = task_agent.merge_choice_info(choice_info)
        merged_predictions_idx = task_agent.choice_info_to_predictions(merged_choice_info)["lm_log_p"]
        predicted = task_agent.CHOICES[merged_predictions_idx]
        ground_truth = task_agent.CHOICES[data["answer_idx"]]

        res = f"{DISPLAY_MAPPING[dataset_name][predicted]}"
        if predicted == ground_truth:
            res += " ✅"
            num_correct += 1
        else:
            res += " ❌"
        all_predicted.append(res)
    all_predicted.append(f"{100*num_correct / len(all_predicted):.2f}%")
    return all_predicted


def transpose(l):
    return list(map(list, zip(*l)))


def button_pressed(prev_state):
    dataset_name = prev_state["dataset_name"]
    exemplar_str = prev_state["exemplar_str"]
    forward_steps = prev_state["step"] + 2
    raw_data = prev_state["raw_data"]
    prev_table_data = prev_state["table_data"]

    current_output = process_once(dataset_name, exemplar_str, forward_steps, raw_data)

    t_prev = transpose(prev_table_data)
    if forward_steps == 1:
        t_prev.append(["**ICL**"] + current_output)
    else:
        t_prev.append([f"**Step={forward_steps}**"] + current_output)
    updated_table_data = transpose(t_prev)

    ret = [
        {
            "dataset_name": dataset_name,
            "exemplar_str": exemplar_str,
            "raw_data": raw_data,
            "step": forward_steps,
            "table_data": updated_table_data,
        },
        f"Click here to train LLM ! Now Step: {forward_steps}",
        updated_table_data,
    ]
    return ret


if __name__ == "__main__":
    dataset_name = "sst2"
    seed = 0
    prompt_version = "default"
    kv_iter = 10

    model_name, model_size = "opt", "125m"
    step_size, momentum = 0.01, 0.9
    setup_cpu(seed=seed)
    tokenizer = build_tokenizer(model_name, model_size, padding_side="right")
    model = build_model(model_name, model_size, False)
    torch.autograd.set_grad_enabled(False)

    print(f"Dataset: {dataset_name}")
    task_root = Path("example_sets").joinpath(dataset_name)

    with task_root.joinpath("demos.txt").open("r") as f:
        demos = f.read()
    with task_root.joinpath("sample.pkl").open("r") as f:
        raw_data = json.load(f)

    icl_result = process_once(dataset_name, demos, 1, raw_data)

    text = """We utilize a Large Language Model (LLM) to perform in-context learning (ICL) for sentiment classification of movie reviews.
    
Taking the following two labeled examples as demonstrations, we predict the sentiment of the subsequent test input.

Directly employing ICL results in lower prediction accuracy. However, in our proposed approach, **Deep-Thinking**, we repeatedly apply **Forward Tuning**, leading to improved accuracy of the model."""

    css = """
#the-table { overflow: auto; }
#the-table > div:nth-child(2) { margin: auto; width: fit-content; }
#the-table > div > div > div > table { width: auto; margin: 0; white-space: normal; }
#the-table > div > div > div > table > thead {display: none}
#the-table > div > div > div > table > tbody > tr:last-child {background-color: beige}
#the-table > div > div > div > table > tbody > tr:first-child {background-color: lightgray}
#the-table > div > div > div > table > tbody > tr > td:first-child {min-width: 300px;}
#the-table > div > div > div > table > tbody > tr > td:not(:first-child) {white-space: nowrap; padding: 0 2px; }
#the-text { font-size: large; }
    """

    title = "🤔 Iterative Forward Tuning Boosts In-context Learning in Language Models"
    demo = gr.Blocks(css=css, title="🤔Deep-Thinking")
    with demo:
        gr.Markdown(f"<h1 style='text-align: center; margin-bottom: 1rem'>{title}</h1>")
        gr.Markdown(
            """
<h2 style='text-align: center; margin-bottom: 1rem'>
<a href='https://arxiv.org/abs/2305.13016' target="_blank" style='text-decoration: none'>[Paper]</a>
<a href='https://arxiv.org/abs/2305.13016' target="_blank" style='text-decoration: none'>[Code]</a> 
</h2>"""
        )

        gr.Markdown(text, elem_id="the-text")
        with gr.Tab("SST-2"):
            mapping = ["negative", "positive"]

            init_columns = [[e["sentence"]] for e in raw_data]

            init_table_result = [["**Test Input**"], *init_columns, ["**Accuracy**"]]
            init_table_result = transpose(init_table_result)
            init_table_result.append(["**ICL**"] + icl_result)
            init_table_result = transpose(init_table_result)

            state = gr.State(
                {
                    "dataset_name": "sst2",
                    "exemplar_str": demos,
                    "raw_data": raw_data,
                    "step": 1,
                    "table_data": init_table_result,
                }
            )

            prompt = gr.Textbox(label="Demonstrations (Prompt template formatted)", value=demos)
            gr.Markdown("<h2 style='text-align: center; margin-bottom: 1rem'>👇 Run forward tuning once !</h2>")
            step_button = gr.Button("Click here to train LLM ! Now Step: 1", variant="primary")
            big_table = gr.DataFrame(
                value=init_table_result,
                elem_id="the-table",
                datatype=["markdown"] * 50,
                headers=None,
            )
            step_button.click(button_pressed, inputs=[state], outputs=[state, step_button, big_table])

    demo.launch(server_name="0.0.0.0")