Spaces:
No application file
No application file
Create train.py
Browse files
train.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import skops.io as sio
|
3 |
+
from sklearn.compose import ColumnTransformer
|
4 |
+
from sklearn.ensemble import RandomForestClassifier
|
5 |
+
from sklearn.impute import SimpleImputer
|
6 |
+
from sklearn.metrics import accuracy_score, f1_score
|
7 |
+
from sklearn.pipeline import Pipeline
|
8 |
+
from sklearn.preprocessing import OrdinalEncoder, StandardScaler
|
9 |
+
|
10 |
+
## Loading the Data
|
11 |
+
drug_df = pd.read_csv("Data/drug.csv")
|
12 |
+
drug_df = drug_df.sample(frac=1)
|
13 |
+
|
14 |
+
## Train Test Split
|
15 |
+
from sklearn.model_selection import train_test_split
|
16 |
+
|
17 |
+
X = drug_df.drop("Drug", axis=1).values
|
18 |
+
y = drug_df.Drug.values
|
19 |
+
|
20 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
21 |
+
X, y, test_size=0.3, random_state=125
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
## Pipeline
|
26 |
+
cat_col = [1,2,3]
|
27 |
+
num_col = [0,4]
|
28 |
+
|
29 |
+
transform = ColumnTransformer(
|
30 |
+
[
|
31 |
+
("encoder", OrdinalEncoder(), cat_col),
|
32 |
+
("num_imputer", SimpleImputer(strategy="median"), num_col),
|
33 |
+
("num_scaler", StandardScaler(), num_col),
|
34 |
+
]
|
35 |
+
)
|
36 |
+
pipe = Pipeline(
|
37 |
+
steps=[
|
38 |
+
("preprocessing", transform),
|
39 |
+
("model", RandomForestClassifier(n_estimators=10, random_state=125)),
|
40 |
+
]
|
41 |
+
)
|
42 |
+
|
43 |
+
## Training
|
44 |
+
pipe.fit(X_train, y_train)
|
45 |
+
|
46 |
+
|
47 |
+
## Model Evaluation
|
48 |
+
predictions = pipe.predict(X_test)
|
49 |
+
accuracy = accuracy_score(y_test, predictions)
|
50 |
+
f1 = f1_score(y_test, predictions, average="macro")
|
51 |
+
|
52 |
+
print("Accuracy:", str(round(accuracy, 2) * 100) + "%", "F1:", round(f1, 2))
|
53 |
+
|
54 |
+
|
55 |
+
## Confusion Matrix Plot
|
56 |
+
import matplotlib.pyplot as plt
|
57 |
+
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
|
58 |
+
|
59 |
+
predictions = pipe.predict(X_test)
|
60 |
+
cm = confusion_matrix(y_test, predictions, labels=pipe.classes_)
|
61 |
+
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=pipe.classes_)
|
62 |
+
disp.plot()
|
63 |
+
plt.savefig("./Results/model_results.png", dpi=120)
|
64 |
+
|
65 |
+
## Write metrics to file
|
66 |
+
with open("./Results/metrics.txt", "w") as outfile:
|
67 |
+
outfile.write(f"\nAccuracy = {round(accuracy, 2)}, F1 Score = {round(f1, 2)}")
|
68 |
+
|
69 |
+
## Saving the model file
|
70 |
+
sio.dump(pipe, "./Model/drug_pipeline.skops")
|