
the matching cost by performing two-pass aggregation using
two orthogonal 1D windows [5], [6], [8]. The two-pass method
first aggregates matching costs in the vertical direction, and
then computes a weighted sum of the aggregated costs in the
horizontal direction. Given that support regions are of size
ω × ω, the two-pass method reduces the complexity of cost
aggregation from O(ω2) to O(ω).

B. Temporal cost aggregation
Once aggregated costs C(p, p̄) have been computed for all

pixels p in the reference image and their respective matching
candidates p̄ in the target image, a single-pass temporal
aggregation routine is exectuted. At each time instance, the
algorithm stores an auxiliary cost Ca(p, p̄) which holds a
weighted summation of costs obtained in the previous frames.
During temporal aggregation, the auxiliary cost is merged with
the cost obtained from the current frame using

C(p, p̄)← (1− λ) · C(p, p̄) + λ · wt(p, pt-1) · Ca(p, p̄)

(1− λ) + λ · wt(p, pt-1)
, (4)

where the feedback coefficient λ controls the amount of cost
smoothing and wt(p, pt-1) enforces color similarity in the
temporal domain. The temporal adaptive weight computed
between the pixel of interest p in the current frame and pixel
pt-1, located at the same spatial coordinate in the prior frame,
is given by

wt(p, pt-1) = exp

(
−∆c(p, pt-1)

γt

)
, (5)

where γt regulates the strength of grouping by color similarity
in the temporal dimension. The temporal adaptive weight has
the effect of preserving edges in the temporal domain, such
that when a pixel coordinate transitions from one side of an
edge to another in subsequent frames, the auxiliary cost is
assigned a small weight and the majority of the cost is derived
from the current frame.

C. Disparity Selection and Confidence Assessment
Having performed temporal cost aggregation, matches are

determined using the Winner-Takes-All (WTA) match selec-
tion criteria. The match for p, denoted as m(p), is the can-
didate pixel p̄ ∈ Sp characterized by the minimum matching
cost, and is given by

m(p) = argmin
p̄∈Sp

C(p, p̄) . (6)

To asses the level of confidence associated with selecting
minimum cost matches, the algorithm determines another set
of matches, this time from the target to reference image, and
verifies if the results agree. Given that p̄ = m(p), i.e. pixel p̄
in the right image is the match for pixel p in the left image,
and p′ = m(p̄), the confidence measure Fp is computed as

Fp =


min

p̄∈Sp\m(p)
C(p, p̄)− min

p̄∈Sp

C(p, p̄)

min
p̄∈Sp\m(p)

C(p, p̄)
, |dp − dp′ | ≤ 1

0, otherwise

.

(7)

D. Iterative Disparity Refinement

Once the first iteration of stereo matching is complete,
disparity estimates Di

p can be used to guide matching in
subsequent iterations. This is done by penalizing disparities
that deviate from their expected values. The penalty function
is given by

Λi(p, p̄) = α×
∑
q∈Ωp

w(p, q)F i-1
q

∣∣Di-1
q − dp

∣∣ , (8)

where the value of α is chosen empirically. Next, the penalty
values are incorporated into the matching cost as

Ci(p, p̄) = C0(p, p̄) + Λi(p, p̄) , (9)

and the matches are reselected using the WTA match selection
criteria. The resulting disparity maps are then post-processed
using a combination of median filtering and occlusion filling.
Finally, the current cost becomes the auxiliary cost for the next
pair of frames in the video sequence, i.e., Ca(p, p̄)← C(p, p̄)
for all pixels p in the and their matching candidates p̄.

IV. RESULTS

The speed and accuracy of real-time stereo matching al-
gorithms are traditionally demonstrated using still-frame im-
ages from the Middlebury stereo benchmark [1], [2]. Still
frames, however, are insufficient for evaluating stereo match-
ing algorithms that incorporate frame-to-frame prediction to
enhance matching accuracy. An alternative approach is to
use a stereo video sequence with a ground truth disparity
for each frame. Obtaining the ground truth disparity of real
world video sequences is a difficult undertaking due to the
high frame rate of video and limitations in depth sensing-
technology. To address the need for stereo video with ground
truth disparities, five pairs of synthetic stereo video sequences
of a computer-generated scene were given in [19]. While these
videos incorporate a sufficient amount of movement variation,
they were generated from relatively simple models using low-
resolution rendering, and they do not provide occlusion or
discontinuity maps.

To evaluate the performance of temporal aggregation, a
new synthetic stereo video sequence is introduced along with
corresponding disparity maps, occlusion maps, and disconti-
nuity maps for evaluating the performance of temporal stereo
matching algorithms. To create the video sequence, a complex
scene was constructed using Google Sketchup and a pair
of animated paths were rendered photorealistically using the
Kerkythea rendering software. Realistic material properties
were used to give surfaces a natural-looking appearance by
adjusting their specularity, reflectance, and diffusion. The
video sequence has a resolution of 640 × 480 pixels, a
frame rate of 30 frames per second, and a duration of 4
seconds. In addition to performing photorealistic rendering,
depth renders of both video sequences were also generated and
converted to ground truth disparity for the stereo video. The
video sequences and ground truth data have been made avail-
able at http://mc2.unl.edu/current-research
/image-processing/. Figure 2 shows two sample frames


