Spaces:
Build error
Build error
File size: 4,235 Bytes
d661b19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# some tools developed for the vision class
import numpy as np
from numpy import cross, tan
from numpy.linalg import norm, inv
def normalize(v):
return v / norm(v)
def camera_pose(eye, front, up):
z = normalize(-1 * front)
x = normalize(cross(up, z))
y = normalize(cross(z, x))
# convert to col vector
x = x.reshape(-1, 1)
y = y.reshape(-1, 1)
z = z.reshape(-1, 1)
eye = eye.reshape(-1, 1)
pose = np.block([
[x, y, z, eye],
[0, 0, 0, 1]
])
return pose
def compute_extrinsics(eye, front, up):
pose = camera_pose(eye, front, up)
world_2_cam = inv(pose)
return world_2_cam
def compute_intrinsics(aspect_ratio, fov, img_height_in_pix):
# aspect ratio is w / h
ndc = compute_proj_to_normalized(aspect_ratio, fov)
# anything beyond [-1, 1] should be discarded
# this did not mention how to do z-clipping;
ndc_to_img = compute_normalized_to_img_trans(aspect_ratio, img_height_in_pix)
intrinsic = ndc_to_img @ ndc
return intrinsic
def compute_proj_to_normalized(aspect, fov):
# compared to standard OpenGL NDC intrinsic,
# this skips the 3rd row treatment on z. hence the name partial_ndc
fov_in_rad = fov / 180 * np.pi
t = tan(fov_in_rad / 2) # tan half fov
partial_ndc_intrinsic = np.array([
[1 / (t * aspect), 0, 0, 0],
[0, 1 / t, 0, 0],
[0, 0, -1, 0] # copy the negative distance for division
])
return partial_ndc_intrinsic
def compute_normalized_to_img_trans(aspect, img_height_in_pix):
img_h = img_height_in_pix
img_w = img_height_in_pix * aspect
# note the OpenGL convention that (0, 0) sits at the center of the pixel;
# hence the extra -0.5 translation
# this is useful when you shoot rays through a pixel to the scene
ndc_to_img = np.array([
[img_w / 2, 0, img_w / 2 - 0.5],
[0, img_h / 2, img_h / 2 - 0.5],
[0, 0, 1]
])
img_y_coord_flip = np.array([
[1, 0, 0],
[0, -1, img_h - 1], # note the -1
[0, 0, 1]
])
# the product of the above 2 matrices is equivalent to adding
# - sign to the (1, 1) entry
# you could have simply written
# ndc_to_img = np.array([
# [img_w / 2, 0, img_w / 2 - 0.5],
# [0, -img_h / 2, img_h / 2 - 0.5],
# [0, 0, 1]
# ])
ndc_to_img = img_y_coord_flip @ ndc_to_img
return ndc_to_img
def unproject(K, pixel_coords, depth=1.0):
"""sometimes also referred to as backproject
pixel_coords: [n, 2] pixel locations
depth: [n,] or [,] depth value. of a shape that is broadcastable with pix coords
"""
K = K[0:3, 0:3]
pixel_coords = as_homogeneous(pixel_coords)
pixel_coords = pixel_coords.T # [2+1, n], so that mat mult is on the left
# this will give points with z = -1, which is exactly what you want since
# your camera is facing the -ve z axis
pts = inv(K) @ pixel_coords
pts = pts * depth # [3, n] * [n,] broadcast
pts = pts.T
pts = as_homogeneous(pts)
return pts
"""
these two functions are changed so that they can handle arbitrary number of
dimensions >=1
"""
def homogenize(pts):
# pts: [..., d], where last dim of the d is the diviser
*front, d = pts.shape
pts = pts / pts[..., -1].reshape(*front, 1)
return pts
def as_homogeneous(pts, lib=np):
# pts: [..., d]
*front, d = pts.shape
points = lib.ones((*front, d + 1))
points[..., :d] = pts
return points
def simple_point_render(pts, img_w, img_h, fov, eye, front, up):
"""
pts: [N, 3]
"""
canvas = np.ones((img_h, img_w, 3))
pts = as_homogeneous(pts)
E = compute_extrinsics(eye, front, up)
world_2_ndc = compute_proj_to_normalized(img_w / img_h, fov)
ndc_to_img = compute_normalized_to_img_trans(img_w / img_h, img_h)
pts = pts @ E.T
pts = pts @ world_2_ndc.T
pts = homogenize(pts)
# now filter out outliers beyond [-1, 1]
outlier_mask = (np.abs(pts) > 1.0).any(axis=1)
pts = pts[~outlier_mask]
pts = pts @ ndc_to_img.T
# now draw each point
pts = np.rint(pts).astype(np.int32)
xs, ys, _ = pts.T
canvas[ys, xs] = (1, 0, 0)
return canvas
|