John Smith commited on
Commit
c8a6d39
·
1 Parent(s): 3e0276f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +218 -0
app.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import cv2
3
+ import numpy
4
+ import os
5
+ import random
6
+ from basicsr.archs.rrdbnet_arch import RRDBNet
7
+ from basicsr.utils.download_util import load_file_from_url
8
+
9
+ from realesrgan import RealESRGANer
10
+ from realesrgan.archs.srvgg_arch import SRVGGNetCompact
11
+
12
+
13
+ last_file = None
14
+ img_mode = "RGBA"
15
+
16
+
17
+ def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
18
+ """Real-ESRGAN function to restore (and upscale) images.
19
+ """
20
+ if not img:
21
+ return
22
+
23
+ # Define model parameters
24
+ if model_name == 'RealESRGAN_x4plus': # x4 RRDBNet model
25
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
26
+ netscale = 4
27
+ file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
28
+ elif model_name == 'RealESRNet_x4plus': # x4 RRDBNet model
29
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
30
+ netscale = 4
31
+ file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
32
+ elif model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks
33
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
34
+ netscale = 4
35
+ file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
36
+ elif model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model
37
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
38
+ netscale = 2
39
+ file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
40
+ elif model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size)
41
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
42
+ netscale = 4
43
+ file_url = [
44
+ 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth',
45
+ 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
46
+ ]
47
+
48
+ # Determine model paths
49
+ model_path = os.path.join('weights', model_name + '.pth')
50
+ if not os.path.isfile(model_path):
51
+ ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
52
+ for url in file_url:
53
+ # model_path will be updated
54
+ model_path = load_file_from_url(
55
+ url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
56
+
57
+ # Use dni to control the denoise strength
58
+ dni_weight = None
59
+ if model_name == 'realesr-general-x4v3' and denoise_strength != 1:
60
+ wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
61
+ model_path = [model_path, wdn_model_path]
62
+ dni_weight = [denoise_strength, 1 - denoise_strength]
63
+
64
+ # Restorer Class
65
+ upsampler = RealESRGANer(
66
+ scale=netscale,
67
+ model_path=model_path,
68
+ dni_weight=dni_weight,
69
+ model=model,
70
+ tile=0,
71
+ tile_pad=10,
72
+ pre_pad=10,
73
+ half=False,
74
+ gpu_id=None
75
+ )
76
+
77
+ # Use GFPGAN for face enhancement
78
+ if face_enhance:
79
+ from gfpgan import GFPGANer
80
+ face_enhancer = GFPGANer(
81
+ model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
82
+ upscale=outscale,
83
+ arch='clean',
84
+ channel_multiplier=2,
85
+ bg_upsampler=upsampler)
86
+
87
+ # Convert the input PIL image to cv2 image, so that it can be processed by realesrgan
88
+ cv_img = numpy.array(img)
89
+ img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA)
90
+
91
+ # Apply restoration
92
+ try:
93
+ if face_enhance:
94
+ _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
95
+ else:
96
+ output, _ = upsampler.enhance(img, outscale=outscale)
97
+ except RuntimeError as error:
98
+ print('Error', error)
99
+ print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
100
+ else:
101
+ # Save restored image and return it to the output Image component
102
+ if img_mode == 'RGBA': # RGBA images should be saved in png format
103
+ extension = 'png'
104
+ else:
105
+ extension = 'jpg'
106
+
107
+ out_filename = f"output_{rnd_string(8)}.{extension}"
108
+ cv2.imwrite(out_filename, output)
109
+ global last_file
110
+ last_file = out_filename
111
+ return out_filename
112
+
113
+
114
+ def rnd_string(x):
115
+ """Returns a string of 'x' random characters
116
+ """
117
+ characters = "abcdefghijklmnopqrstuvwxyz_0123456789"
118
+ result = "".join((random.choice(characters)) for i in range(x))
119
+ return result
120
+
121
+
122
+ def reset():
123
+ """Resets the Image components of the Gradio interface and deletes
124
+ the last processed image
125
+ """
126
+ global last_file
127
+ if last_file:
128
+ print(f"Deleting {last_file} ...")
129
+ os.remove(last_file)
130
+ last_file = None
131
+ return gr.update(value=None), gr.update(value=None)
132
+
133
+
134
+ def has_transparency(img):
135
+ """This function works by first checking to see if a "transparency" property is defined
136
+ in the image's info -- if so, we return "True". Then, if the image is using indexed colors
137
+ (such as in GIFs), it gets the index of the transparent color in the palette
138
+ (img.info.get("transparency", -1)) and checks if it's used anywhere in the canvas
139
+ (img.getcolors()). If the image is in RGBA mode, then presumably it has transparency in
140
+ it, but it double-checks by getting the minimum and maximum values of every color channel
141
+ (img.getextrema()), and checks if the alpha channel's smallest value falls below 255.
142
+ https://stackoverflow.com/questions/43864101/python-pil-check-if-image-is-transparent
143
+ """
144
+ if img.info.get("transparency", None) is not None:
145
+ return True
146
+ if img.mode == "P":
147
+ transparent = img.info.get("transparency", -1)
148
+ for _, index in img.getcolors():
149
+ if index == transparent:
150
+ return True
151
+ elif img.mode == "RGBA":
152
+ extrema = img.getextrema()
153
+ if extrema[3][0] < 255:
154
+ return True
155
+ return False
156
+
157
+
158
+ def image_properties(img):
159
+ """Returns the dimensions (width and height) and color mode of the input image and
160
+ also sets the global img_mode variable to be used by the realesrgan function
161
+ """
162
+ global img_mode
163
+ if img:
164
+ if has_transparency(img):
165
+ img_mode = "RGBA"
166
+ else:
167
+ img_mode = "RGB"
168
+ properties = f"Width: {img.size[0]}, Height: {img.size[1]} | Color Mode: {img_mode}"
169
+ return properties
170
+
171
+
172
+ def main():
173
+ # Gradio Interface
174
+ with gr.Blocks(title="Upscaling Service", theme="dark") as demo:
175
+
176
+ gr.Markdown(
177
+ """This Space is a fork of "Real-ESRGAN-Demo", so if you want to use it please refer to [havas79/Real-ESRGAN_Demo](https://huggingface.co/spaces/havas79/Real-ESRGAN_Demo), thank you!"""
178
+ )
179
+
180
+ with gr.Accordion("Options/Parameters"):
181
+ with gr.Row():
182
+ model_name = gr.Dropdown(label="Real-ESRGAN inference model to be used",
183
+ choices=["RealESRGAN_x4plus", "RealESRNet_x4plus", "RealESRGAN_x4plus_anime_6B",
184
+ "RealESRGAN_x2plus", "realesr-general-x4v3"],
185
+ value="realesr-general-x4v3", show_label=True)
186
+ denoise_strength = gr.Slider(label="Denoise Strength (Used only with the realesr-general-x4v3 model)",
187
+ minimum=0, maximum=1, step=0.1, value=0.5)
188
+ outscale = gr.Slider(label="Image Upscaling Factor",
189
+ minimum=1, maximum=10, step=1, value=4, show_label=True)
190
+ face_enhance = gr.Checkbox(label="Face Enhancement using GFPGAN (Doesn't work for anime images)",
191
+ value=False, show_label=True)
192
+
193
+ with gr.Row():
194
+ with gr.Group():
195
+ input_image = gr.Image(label="Source Image", type="pil", image_mode="RGBA")
196
+ input_image_properties = gr.Textbox(label="Image Properties", max_lines=1)
197
+ output_image = gr.Image(label="Restored Image", image_mode="RGBA")
198
+ with gr.Row():
199
+ restore_btn = gr.Button("Upscale")
200
+
201
+ # Event listeners:
202
+ input_image.change(fn=image_properties, inputs=input_image, outputs=input_image_properties)
203
+ restore_btn.click(fn=realesrgan,
204
+ inputs=[input_image, model_name, denoise_strength, face_enhance, outscale],
205
+ outputs=output_image,
206
+ api_name="upscale")
207
+
208
+ gr.Markdown(
209
+ """*Please note that support for animated GIFs is not yet implemented. Should an animated GIF is chosen for restoration,
210
+ the demo will output only the first frame saved in PNG format (to preserve probable transparency).*
211
+ """
212
+ )
213
+
214
+ demo.launch()
215
+
216
+
217
+ if __name__ == "__main__":
218
+ main()