File size: 10,878 Bytes
c095e16
 
 
 
893d387
 
 
c095e16
53a3c92
 
c095e16
 
 
 
53a3c92
 
 
c095e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53a3c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c095e16
 
 
 
 
 
 
 
 
 
 
 
 
 
53a3c92
 
 
c095e16
 
 
 
893d387
 
79d1a94
 
 
 
 
53a3c92
79d1a94
53a3c92
 
79d1a94
 
 
53a3c92
79d1a94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53a3c92
79d1a94
 
 
 
 
 
 
 
 
53a3c92
79d1a94
 
 
 
 
 
 
 
 
 
 
53a3c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
from nc_py_api import Nextcloud
import json
from typing import Dict, Any
import os
import time
from datetime import datetime
import threading
import arena_config
import sys
import math

# Initialize Nextcloud client
nc = Nextcloud(nextcloud_url=arena_config.NEXTCLOUD_URL, nc_auth_user=arena_config.NEXTCLOUD_USERNAME, nc_auth_pass=arena_config.NEXTCLOUD_PASSWORD)

# Dictionary to store ELO ratings
elo_ratings = {}

def load_leaderboard() -> Dict[str, Any]:
    try:
        file_content = nc.files.download(arena_config.NEXTCLOUD_LEADERBOARD_PATH)
        return json.loads(file_content.decode('utf-8'))
    except Exception as e:
        print(f"Error loading leaderboard: {str(e)}")
        return {}

def save_leaderboard(leaderboard_data: Dict[str, Any]) -> bool:
    try:
        json_data = json.dumps(leaderboard_data, indent=2)
        nc.files.upload(arena_config.NEXTCLOUD_LEADERBOARD_PATH, json_data.encode('utf-8'))
        return True
    except Exception as e:
        print(f"Error saving leaderboard: {str(e)}")
        return False

def get_model_size(model_name):
    for model, human_readable in arena_config.APPROVED_MODELS:
        if model == model_name:
            size = float(human_readable.split('(')[1].split('B')[0])
            return size
    return 1.0  # Default size if not found

def calculate_expected_score(rating_a, rating_b):
    return 1 / (1 + math.pow(10, (rating_b - rating_a) / 400))

def update_elo_ratings(winner, loser):
    if winner not in elo_ratings or loser not in elo_ratings:
        initialize_elo_ratings()
    
    winner_rating = elo_ratings[winner]
    loser_rating = elo_ratings[loser]
    
    expected_winner = calculate_expected_score(winner_rating, loser_rating)
    expected_loser = 1 - expected_winner
    
    winner_size = get_model_size(winner)
    loser_size = get_model_size(loser)
    max_size = max(get_model_size(model) for model, _ in arena_config.APPROVED_MODELS)
    
    k_factor = 32 * (1 + (loser_size - winner_size) / max_size)
    
    elo_ratings[winner] += k_factor * (1 - expected_winner)
    elo_ratings[loser] += k_factor * (0 - expected_loser)

def initialize_elo_ratings():
    leaderboard = load_leaderboard()
    for model, _ in arena_config.APPROVED_MODELS:
        size = get_model_size(model)
        elo_ratings[model] = 1000 + (size * 100)
    
    # Replay all battles to update ELO ratings
    for model, data in leaderboard.items():
        for opponent, results in data['opponents'].items():
            for _ in range(results['wins']):
                update_elo_ratings(model, opponent)
            for _ in range(results['losses']):
                update_elo_ratings(opponent, model)

def ensure_elo_ratings_initialized():
    if not elo_ratings:
        initialize_elo_ratings()

def update_leaderboard(winner: str, loser: str) -> Dict[str, Any]:
    leaderboard = load_leaderboard()
    
    if winner not in leaderboard:
        leaderboard[winner] = {"wins": 0, "losses": 0, "opponents": {}}
    if loser not in leaderboard:
        leaderboard[loser] = {"wins": 0, "losses": 0, "opponents": {}}
    
    leaderboard[winner]["wins"] += 1
    leaderboard[winner]["opponents"].setdefault(loser, {"wins": 0, "losses": 0})["wins"] += 1
    
    leaderboard[loser]["losses"] += 1
    leaderboard[loser]["opponents"].setdefault(winner, {"wins": 0, "losses": 0})["losses"] += 1
    
    # Update ELO ratings
    update_elo_ratings(winner, loser)
    
    save_leaderboard(leaderboard)
    return leaderboard

def get_current_leaderboard() -> Dict[str, Any]:
    return load_leaderboard()

def get_human_readable_name(model_name: str) -> str:
    model_dict = dict(arena_config.APPROVED_MODELS)
    return model_dict.get(model_name, model_name)

def get_leaderboard():
    leaderboard = load_leaderboard()
    sorted_results = sorted(
        leaderboard.items(), 
        key=lambda x: (x[1]["wins"] / (x[1]["wins"] + x[1]["losses"]) if x[1]["wins"] + x[1]["losses"] > 0 else 0, x[1]["wins"] + x[1]["losses"]), 
        reverse=True
    )

    leaderboard_html = """
    <style>
        .leaderboard-table {
            width: 100%;
            border-collapse: collapse;
            font-family: Arial, sans-serif;
        }
        .leaderboard-table th, .leaderboard-table td {
            border: 1px solid #ddd;
            padding: 8px;
            text-align: left;
        }
        .leaderboard-table th {
            background-color: rgba(255, 255, 255, 0.1);
            font-weight: bold;
        }
        .rank-column {
            width: 60px;
            text-align: center;
        }
        .opponent-details {
            font-size: 0.9em;
            color: #888;
        }
    </style>
    <table class='leaderboard-table'>
    <tr>
        <th class='rank-column'>Rank</th>
        <th>Model</th>
        <th>Wins</th>
        <th>Losses</th>
        <th>Win Rate</th>
        <th>Total Battles</th>
        <th>Top Rival</th>
        <th>Toughest Opponent</th>
    </tr>
    """
    
    for index, (model, results) in enumerate(sorted_results, start=1):
        total_battles = results["wins"] + results["losses"]
        win_rate = (results["wins"] / total_battles * 100) if total_battles > 0 else 0
        
        rank_display = {1: "πŸ₯‡", 2: "πŸ₯ˆ", 3: "πŸ₯‰"}.get(index, f"{index}")
        
        top_rival = max(results["opponents"].items(), key=lambda x: x[1]["wins"], default=(None, {"wins": 0}))
        top_rival_name = get_human_readable_name(top_rival[0]) if top_rival[0] else "N/A"
        top_rival_wins = top_rival[1]["wins"]
        
        toughest_opponent = max(results["opponents"].items(), key=lambda x: x[1]["losses"], default=(None, {"losses": 0}))
        toughest_opponent_name = get_human_readable_name(toughest_opponent[0]) if toughest_opponent[0] else "N/A"
        toughest_opponent_losses = toughest_opponent[1]["losses"]
        
        leaderboard_html += f"""
        <tr>
            <td class='rank-column'>{rank_display}</td>
            <td>{get_human_readable_name(model)}</td>
            <td>{results['wins']}</td>
            <td>{results['losses']}</td>
            <td>{win_rate:.2f}%</td>
            <td>{total_battles}</td>
            <td class='opponent-details'>{top_rival_name} (W: {top_rival_wins})</td>
            <td class='opponent-details'>{toughest_opponent_name} (L: {toughest_opponent_losses})</td>
        </tr>
        """
    leaderboard_html += "</table>"
    return leaderboard_html

def get_elo_leaderboard():
    ensure_elo_ratings_initialized()
    leaderboard = load_leaderboard()
    sorted_ratings = sorted(elo_ratings.items(), key=lambda x: x[1], reverse=True)
    
    min_initial_rating = min(1000 + (get_model_size(model) * 100) for model, _ in arena_config.APPROVED_MODELS)
    max_initial_rating = max(1000 + (get_model_size(model) * 100) for model, _ in arena_config.APPROVED_MODELS)
    
    explanation = f"""
    <p style="font-size: 16px; margin-bottom: 20px;">
    This leaderboard uses a modified ELO rating system that takes into account both the performance and size of the models. 
    Initial ratings range from {round(min_initial_rating)} to {round(max_initial_rating)} points, based on model size, with larger models starting at higher ratings. 
    When a smaller model defeats a larger one, it gains more points, while larger models gain fewer points for beating smaller ones. 
    The "Points Scored" column shows the total ELO points gained by the model from its victories, reflecting both quantity and quality of wins.
    The "Points Lost" column shows the total ELO points lost by the model from its defeats, indicating the challenges faced.
    </p>
    """
    
    leaderboard_html = f"""
    {explanation}
    <style>
        .elo-leaderboard-table {{
            width: 100%;
            border-collapse: collapse;
            font-family: Arial, sans-serif;
        }}
        .elo-leaderboard-table th, .elo-leaderboard-table td {{
            border: 1px solid #ddd;
            padding: 8px;
            text-align: left;
        }}
        .elo-leaderboard-table th {{
            background-color: rgba(255, 255, 255, 0.1);
            font-weight: bold;
        }}
        .rank-column {{
            width: 60px;
            text-align: center;
        }}
    </style>
    <table class='elo-leaderboard-table'>
    <tr>
        <th class='rank-column'>Rank</th>
        <th>Model</th>
        <th>ELO Rating</th>
        <th>Points Scored</th>
        <th>Points Lost</th>
    </tr>
    """
    
    for index, (model, rating) in enumerate(sorted_ratings, start=1):
        rank_display = {1: "πŸ₯‡", 2: "πŸ₯ˆ", 3: "πŸ₯‰"}.get(index, f"{index}")
        model_size = get_model_size(model)
        
        points_scored = 0
        points_lost = 0
        if model in leaderboard:
            for opponent, results in leaderboard[model]['opponents'].items():
                opponent_rating = elo_ratings.get(opponent, 1000)
                opponent_size = get_model_size(opponent)
                max_size = max(get_model_size(m) for m, _ in arena_config.APPROVED_MODELS)
                
                for _ in range(results['wins']):
                    expected_score = calculate_expected_score(rating, opponent_rating)
                    k_factor = 32 * (1 + (opponent_size - model_size) / max_size)
                    points_scored += k_factor * (1 - expected_score)
                
                for _ in range(results['losses']):
                    expected_score = calculate_expected_score(rating, opponent_rating)
                    k_factor = 32 * (1 + (model_size - opponent_size) / max_size)
                    points_lost += k_factor * expected_score
        
        leaderboard_html += f"""
        <tr>
            <td class='rank-column'>{rank_display}</td>
            <td>{get_human_readable_name(model)}</td>
            <td>{round(rating)}</td>
            <td>{round(points_scored, 2)}</td>
            <td>{round(points_lost, 2)}</td>
        </tr>
        """
    
    leaderboard_html += "</table>"
    return leaderboard_html

def create_backup():
    while True:
        try:
            leaderboard_data = load_leaderboard()
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            backup_file_name = f"leaderboard_backup_{timestamp}.json"
            backup_path = f"{arena_config.NEXTCLOUD_BACKUP_FOLDER}/{backup_file_name}"
            json_data = json.dumps(leaderboard_data, indent=2)
            nc.files.upload(backup_path, json_data.encode('utf-8'))
            print(f"Backup created on Nextcloud: {backup_path}")
        except Exception as e:
            print(f"Error creating backup: {e}")
        time.sleep(3600)  # Sleep for 1 HOUR

def start_backup_thread():
    backup_thread = threading.Thread(target=create_backup, daemon=True)
    backup_thread.start()