Spaces:
Running
Running
File size: 10,878 Bytes
c095e16 893d387 c095e16 53a3c92 c095e16 53a3c92 c095e16 53a3c92 c095e16 53a3c92 c095e16 893d387 79d1a94 53a3c92 79d1a94 53a3c92 79d1a94 53a3c92 79d1a94 53a3c92 79d1a94 53a3c92 79d1a94 53a3c92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
from nc_py_api import Nextcloud
import json
from typing import Dict, Any
import os
import time
from datetime import datetime
import threading
import arena_config
import sys
import math
# Initialize Nextcloud client
nc = Nextcloud(nextcloud_url=arena_config.NEXTCLOUD_URL, nc_auth_user=arena_config.NEXTCLOUD_USERNAME, nc_auth_pass=arena_config.NEXTCLOUD_PASSWORD)
# Dictionary to store ELO ratings
elo_ratings = {}
def load_leaderboard() -> Dict[str, Any]:
try:
file_content = nc.files.download(arena_config.NEXTCLOUD_LEADERBOARD_PATH)
return json.loads(file_content.decode('utf-8'))
except Exception as e:
print(f"Error loading leaderboard: {str(e)}")
return {}
def save_leaderboard(leaderboard_data: Dict[str, Any]) -> bool:
try:
json_data = json.dumps(leaderboard_data, indent=2)
nc.files.upload(arena_config.NEXTCLOUD_LEADERBOARD_PATH, json_data.encode('utf-8'))
return True
except Exception as e:
print(f"Error saving leaderboard: {str(e)}")
return False
def get_model_size(model_name):
for model, human_readable in arena_config.APPROVED_MODELS:
if model == model_name:
size = float(human_readable.split('(')[1].split('B')[0])
return size
return 1.0 # Default size if not found
def calculate_expected_score(rating_a, rating_b):
return 1 / (1 + math.pow(10, (rating_b - rating_a) / 400))
def update_elo_ratings(winner, loser):
if winner not in elo_ratings or loser not in elo_ratings:
initialize_elo_ratings()
winner_rating = elo_ratings[winner]
loser_rating = elo_ratings[loser]
expected_winner = calculate_expected_score(winner_rating, loser_rating)
expected_loser = 1 - expected_winner
winner_size = get_model_size(winner)
loser_size = get_model_size(loser)
max_size = max(get_model_size(model) for model, _ in arena_config.APPROVED_MODELS)
k_factor = 32 * (1 + (loser_size - winner_size) / max_size)
elo_ratings[winner] += k_factor * (1 - expected_winner)
elo_ratings[loser] += k_factor * (0 - expected_loser)
def initialize_elo_ratings():
leaderboard = load_leaderboard()
for model, _ in arena_config.APPROVED_MODELS:
size = get_model_size(model)
elo_ratings[model] = 1000 + (size * 100)
# Replay all battles to update ELO ratings
for model, data in leaderboard.items():
for opponent, results in data['opponents'].items():
for _ in range(results['wins']):
update_elo_ratings(model, opponent)
for _ in range(results['losses']):
update_elo_ratings(opponent, model)
def ensure_elo_ratings_initialized():
if not elo_ratings:
initialize_elo_ratings()
def update_leaderboard(winner: str, loser: str) -> Dict[str, Any]:
leaderboard = load_leaderboard()
if winner not in leaderboard:
leaderboard[winner] = {"wins": 0, "losses": 0, "opponents": {}}
if loser not in leaderboard:
leaderboard[loser] = {"wins": 0, "losses": 0, "opponents": {}}
leaderboard[winner]["wins"] += 1
leaderboard[winner]["opponents"].setdefault(loser, {"wins": 0, "losses": 0})["wins"] += 1
leaderboard[loser]["losses"] += 1
leaderboard[loser]["opponents"].setdefault(winner, {"wins": 0, "losses": 0})["losses"] += 1
# Update ELO ratings
update_elo_ratings(winner, loser)
save_leaderboard(leaderboard)
return leaderboard
def get_current_leaderboard() -> Dict[str, Any]:
return load_leaderboard()
def get_human_readable_name(model_name: str) -> str:
model_dict = dict(arena_config.APPROVED_MODELS)
return model_dict.get(model_name, model_name)
def get_leaderboard():
leaderboard = load_leaderboard()
sorted_results = sorted(
leaderboard.items(),
key=lambda x: (x[1]["wins"] / (x[1]["wins"] + x[1]["losses"]) if x[1]["wins"] + x[1]["losses"] > 0 else 0, x[1]["wins"] + x[1]["losses"]),
reverse=True
)
leaderboard_html = """
<style>
.leaderboard-table {
width: 100%;
border-collapse: collapse;
font-family: Arial, sans-serif;
}
.leaderboard-table th, .leaderboard-table td {
border: 1px solid #ddd;
padding: 8px;
text-align: left;
}
.leaderboard-table th {
background-color: rgba(255, 255, 255, 0.1);
font-weight: bold;
}
.rank-column {
width: 60px;
text-align: center;
}
.opponent-details {
font-size: 0.9em;
color: #888;
}
</style>
<table class='leaderboard-table'>
<tr>
<th class='rank-column'>Rank</th>
<th>Model</th>
<th>Wins</th>
<th>Losses</th>
<th>Win Rate</th>
<th>Total Battles</th>
<th>Top Rival</th>
<th>Toughest Opponent</th>
</tr>
"""
for index, (model, results) in enumerate(sorted_results, start=1):
total_battles = results["wins"] + results["losses"]
win_rate = (results["wins"] / total_battles * 100) if total_battles > 0 else 0
rank_display = {1: "π₯", 2: "π₯", 3: "π₯"}.get(index, f"{index}")
top_rival = max(results["opponents"].items(), key=lambda x: x[1]["wins"], default=(None, {"wins": 0}))
top_rival_name = get_human_readable_name(top_rival[0]) if top_rival[0] else "N/A"
top_rival_wins = top_rival[1]["wins"]
toughest_opponent = max(results["opponents"].items(), key=lambda x: x[1]["losses"], default=(None, {"losses": 0}))
toughest_opponent_name = get_human_readable_name(toughest_opponent[0]) if toughest_opponent[0] else "N/A"
toughest_opponent_losses = toughest_opponent[1]["losses"]
leaderboard_html += f"""
<tr>
<td class='rank-column'>{rank_display}</td>
<td>{get_human_readable_name(model)}</td>
<td>{results['wins']}</td>
<td>{results['losses']}</td>
<td>{win_rate:.2f}%</td>
<td>{total_battles}</td>
<td class='opponent-details'>{top_rival_name} (W: {top_rival_wins})</td>
<td class='opponent-details'>{toughest_opponent_name} (L: {toughest_opponent_losses})</td>
</tr>
"""
leaderboard_html += "</table>"
return leaderboard_html
def get_elo_leaderboard():
ensure_elo_ratings_initialized()
leaderboard = load_leaderboard()
sorted_ratings = sorted(elo_ratings.items(), key=lambda x: x[1], reverse=True)
min_initial_rating = min(1000 + (get_model_size(model) * 100) for model, _ in arena_config.APPROVED_MODELS)
max_initial_rating = max(1000 + (get_model_size(model) * 100) for model, _ in arena_config.APPROVED_MODELS)
explanation = f"""
<p style="font-size: 16px; margin-bottom: 20px;">
This leaderboard uses a modified ELO rating system that takes into account both the performance and size of the models.
Initial ratings range from {round(min_initial_rating)} to {round(max_initial_rating)} points, based on model size, with larger models starting at higher ratings.
When a smaller model defeats a larger one, it gains more points, while larger models gain fewer points for beating smaller ones.
The "Points Scored" column shows the total ELO points gained by the model from its victories, reflecting both quantity and quality of wins.
The "Points Lost" column shows the total ELO points lost by the model from its defeats, indicating the challenges faced.
</p>
"""
leaderboard_html = f"""
{explanation}
<style>
.elo-leaderboard-table {{
width: 100%;
border-collapse: collapse;
font-family: Arial, sans-serif;
}}
.elo-leaderboard-table th, .elo-leaderboard-table td {{
border: 1px solid #ddd;
padding: 8px;
text-align: left;
}}
.elo-leaderboard-table th {{
background-color: rgba(255, 255, 255, 0.1);
font-weight: bold;
}}
.rank-column {{
width: 60px;
text-align: center;
}}
</style>
<table class='elo-leaderboard-table'>
<tr>
<th class='rank-column'>Rank</th>
<th>Model</th>
<th>ELO Rating</th>
<th>Points Scored</th>
<th>Points Lost</th>
</tr>
"""
for index, (model, rating) in enumerate(sorted_ratings, start=1):
rank_display = {1: "π₯", 2: "π₯", 3: "π₯"}.get(index, f"{index}")
model_size = get_model_size(model)
points_scored = 0
points_lost = 0
if model in leaderboard:
for opponent, results in leaderboard[model]['opponents'].items():
opponent_rating = elo_ratings.get(opponent, 1000)
opponent_size = get_model_size(opponent)
max_size = max(get_model_size(m) for m, _ in arena_config.APPROVED_MODELS)
for _ in range(results['wins']):
expected_score = calculate_expected_score(rating, opponent_rating)
k_factor = 32 * (1 + (opponent_size - model_size) / max_size)
points_scored += k_factor * (1 - expected_score)
for _ in range(results['losses']):
expected_score = calculate_expected_score(rating, opponent_rating)
k_factor = 32 * (1 + (model_size - opponent_size) / max_size)
points_lost += k_factor * expected_score
leaderboard_html += f"""
<tr>
<td class='rank-column'>{rank_display}</td>
<td>{get_human_readable_name(model)}</td>
<td>{round(rating)}</td>
<td>{round(points_scored, 2)}</td>
<td>{round(points_lost, 2)}</td>
</tr>
"""
leaderboard_html += "</table>"
return leaderboard_html
def create_backup():
while True:
try:
leaderboard_data = load_leaderboard()
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
backup_file_name = f"leaderboard_backup_{timestamp}.json"
backup_path = f"{arena_config.NEXTCLOUD_BACKUP_FOLDER}/{backup_file_name}"
json_data = json.dumps(leaderboard_data, indent=2)
nc.files.upload(backup_path, json_data.encode('utf-8'))
print(f"Backup created on Nextcloud: {backup_path}")
except Exception as e:
print(f"Error creating backup: {e}")
time.sleep(3600) # Sleep for 1 HOUR
def start_backup_thread():
backup_thread = threading.Thread(target=create_backup, daemon=True)
backup_thread.start()
|