File size: 5,410 Bytes
6216e00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90f246e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6216e00
90f246e
 
 
 
 
 
 
 
 
6216e00
 
 
90f246e
 
 
 
 
6216e00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from nc_py_api import Nextcloud
import json
from typing import Dict, List
import os
import time
from datetime import datetime
import threading
import arena_config
import re

# Initialize Nextcloud client
nc = Nextcloud(
    nextcloud_url=arena_config.NEXTCLOUD_URL,
    nc_auth_user=arena_config.NEXTCLOUD_USERNAME,
    nc_auth_pass=arena_config.NEXTCLOUD_PASSWORD
)

SUGGESTIONS_FILE = "model_suggestions.json"
NEXTCLOUD_SUGGESTIONS_PATH = "/gpu_poor_model_suggestions.json"

def validate_model_url(url: str) -> bool:
    """Validate if the provided URL matches the expected HuggingFace format."""
    pattern = r'^hf\.co/[\w-]+/[\w\.-]+(?:-GGUF)?:Q[0-9]+(?:_[A-Z0-9_]+)?$'
    return bool(re.match(pattern, url))

def load_suggestions() -> Dict:
    """Load suggestions from Nextcloud, fallback to local file, or initialize if neither exists."""
    suggestions = None
    
    # First try to load from Nextcloud
    try:
        remote_data = nc.files.download(NEXTCLOUD_SUGGESTIONS_PATH)
        if remote_data:
            suggestions = json.loads(remote_data.decode('utf-8'))
            # Update local file with Nextcloud data
            with open(SUGGESTIONS_FILE, 'w') as f:
                json.dump(suggestions, f, indent=2)
            return suggestions
    except Exception as e:
        print(f"Could not load from Nextcloud: {e}")
    
    # If Nextcloud fails, try local file
    if os.path.exists(SUGGESTIONS_FILE):
        try:
            with open(SUGGESTIONS_FILE, 'r') as f:
                suggestions = json.load(f)
                return suggestions
        except Exception as e:
            print(f"Could not load from local file: {e}")
    
    # If both fail, initialize new suggestions
    suggestions = {
        "suggestions": {},
        "last_updated": datetime.now().isoformat()
    }
    
    # Save the new suggestions to both local and Nextcloud
    save_suggestions(suggestions)
    
    return suggestions

def save_suggestions(suggestions: Dict) -> None:
    """Save suggestions to both local file and Nextcloud."""
    with open(SUGGESTIONS_FILE, 'w') as f:
        json.dump(suggestions, f, indent=2)
    
    # Upload to Nextcloud
    try:
        nc.files.upload(
            NEXTCLOUD_SUGGESTIONS_PATH,
            json.dumps(suggestions, indent=2).encode('utf-8')
        )
    except Exception as e:
        print(f"Error uploading to Nextcloud: {e}")

def add_suggestion(model_url: str) -> str:
    """Add a new model suggestion or update existing one."""
    if not validate_model_url(model_url):
        return "❌ Invalid model URL format. Please use the format: hf.co/username/model-name-GGUF:Q4_K_M"
    
    suggestions = load_suggestions()
    
    if model_url in suggestions["suggestions"]:
        suggestions["suggestions"][model_url]["count"] += 1
        suggestions["suggestions"][model_url]["last_suggested"] = datetime.now().isoformat()
        message = f"✨ Model suggestion updated! This model has been suggested {suggestions['suggestions'][model_url]['count']} times."
    else:
        suggestions["suggestions"][model_url] = {
            "count": 1,
            "first_suggested": datetime.now().isoformat(),
            "last_suggested": datetime.now().isoformat()
        }
        message = "βœ… New model suggestion recorded successfully!"
    
    suggestions["last_updated"] = datetime.now().isoformat()
    save_suggestions(suggestions)
    
    return message

def get_suggestions_html() -> str:
    """Generate HTML table of model suggestions."""
    suggestions = load_suggestions()
    
    # Sort suggestions by count (descending)
    sorted_suggestions = sorted(
        suggestions["suggestions"].items(),
        key=lambda x: x[1]["count"],
        reverse=True
    )
    
    html = """
    <style>
        .suggestions-table {
            width: 100%;
            border-collapse: collapse;
            font-family: Arial, sans-serif;
        }
        .suggestions-table th, .suggestions-table td {
            border: 1px solid #ddd;
            padding: 8px;
            text-align: left;
        }
        .suggestions-table th {
            background-color: rgba(255, 255, 255, 0.1);
            font-weight: bold;
        }
        .rank-column {
            width: 60px;
            text-align: center;
        }
        .count-badge {
            background-color: rgba(34, 87, 122, 0.7);
            color: white;
            padding: 4px 8px;
            border-radius: 12px;
            font-size: 0.9em;
        }
        .description-column {
            font-size: 0.9em;
            color: #888;
        }
    </style>
    <table class='suggestions-table'>
    <tr>
        <th class='rank-column'>Rank</th>
        <th>Model URL</th>
        <th>Suggestions</th>
        <th>First Suggested</th>
        <th>Last Suggested</th>
    </tr>
    """
    
    for index, (model_url, data) in enumerate(sorted_suggestions, start=1):
        rank_display = {1: "πŸ₯‡", 2: "πŸ₯ˆ", 3: "πŸ₯‰"}.get(index, f"{index}")
        
        html += f"""
        <tr>
            <td class='rank-column'>{rank_display}</td>
            <td>{model_url}</td>
            <td><span class="count-badge">{data['count']}</span></td>
            <td>{data['first_suggested'].split('T')[0]}</td>
            <td>{data['last_suggested'].split('T')[0]}</td>
        </tr>
        """
    
    html += "</table>"
    return html