Spaces:
Running
Running
Create internal_stats.py
Browse files- internal_stats.py +193 -0
internal_stats.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from datetime import datetime, timezone
|
3 |
+
from typing import Dict, Any
|
4 |
+
from nc_py_api import Nextcloud
|
5 |
+
import arena_config
|
6 |
+
from leaderboard import load_leaderboard, get_human_readable_name, get_model_size
|
7 |
+
|
8 |
+
def get_internal_stats() -> Dict[str, Any]:
|
9 |
+
leaderboard = load_leaderboard()
|
10 |
+
|
11 |
+
total_battles = sum(
|
12 |
+
model_data['wins'] + model_data['losses']
|
13 |
+
for model_data in leaderboard.values()
|
14 |
+
)
|
15 |
+
|
16 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
17 |
+
|
18 |
+
active_models = len(leaderboard)
|
19 |
+
|
20 |
+
most_battles = max(
|
21 |
+
(model_data['wins'] + model_data['losses'], model)
|
22 |
+
for model, model_data in leaderboard.items()
|
23 |
+
)
|
24 |
+
|
25 |
+
highest_win_rate = max(
|
26 |
+
(model_data['wins'] / (model_data['wins'] + model_data['losses']) if (model_data['wins'] + model_data['losses']) > 0 else 0, model)
|
27 |
+
for model, model_data in leaderboard.items()
|
28 |
+
)
|
29 |
+
|
30 |
+
most_diverse_opponent = max(
|
31 |
+
(len(model_data['opponents']), model)
|
32 |
+
for model, model_data in leaderboard.items()
|
33 |
+
)
|
34 |
+
|
35 |
+
stats = {
|
36 |
+
"timestamp": timestamp,
|
37 |
+
"total_battles": total_battles,
|
38 |
+
"active_models": active_models,
|
39 |
+
"most_battles": {
|
40 |
+
"model": get_human_readable_name(most_battles[1]),
|
41 |
+
"battles": most_battles[0]
|
42 |
+
},
|
43 |
+
"highest_win_rate": {
|
44 |
+
"model": get_human_readable_name(highest_win_rate[1]),
|
45 |
+
"win_rate": f"{highest_win_rate[0]:.2%}"
|
46 |
+
},
|
47 |
+
"most_diverse_opponent": {
|
48 |
+
"model": get_human_readable_name(most_diverse_opponent[1]),
|
49 |
+
"unique_opponents": most_diverse_opponent[0]
|
50 |
+
}
|
51 |
+
}
|
52 |
+
|
53 |
+
return stats
|
54 |
+
|
55 |
+
def save_internal_stats(stats: Dict[str, Any]) -> bool:
|
56 |
+
nc = Nextcloud(
|
57 |
+
nextcloud_url=arena_config.NEXTCLOUD_URL,
|
58 |
+
nc_auth_user=arena_config.NEXTCLOUD_USERNAME,
|
59 |
+
nc_auth_pass=arena_config.NEXTCLOUD_PASSWORD
|
60 |
+
)
|
61 |
+
|
62 |
+
try:
|
63 |
+
json_data = json.dumps(stats, indent=2)
|
64 |
+
nc.files.upload(arena_config.NEXTCLOUD_INTERNAL_STATS_PATH, json_data.encode('utf-8'))
|
65 |
+
return True
|
66 |
+
except Exception as e:
|
67 |
+
print(f"Error saving internal stats to Nextcloud: {str(e)}")
|
68 |
+
return False
|
69 |
+
|
70 |
+
def save_local_stats(stats: Dict[str, Any], filename: str = "internal_stats.json") -> bool:
|
71 |
+
try:
|
72 |
+
with open(filename, 'w') as f:
|
73 |
+
json.dump(stats, f, indent=2)
|
74 |
+
return True
|
75 |
+
except Exception as e:
|
76 |
+
print(f"Error saving internal stats to local file: {str(e)}")
|
77 |
+
return False
|
78 |
+
|
79 |
+
def get_fun_stats() -> Dict[str, Any]:
|
80 |
+
leaderboard = load_leaderboard()
|
81 |
+
|
82 |
+
total_battles = sum(
|
83 |
+
model_data['wins'] + model_data['losses']
|
84 |
+
for model_data in leaderboard.values()
|
85 |
+
)
|
86 |
+
|
87 |
+
timestamp = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S UTC")
|
88 |
+
|
89 |
+
active_models = len(leaderboard)
|
90 |
+
|
91 |
+
most_battles = max(
|
92 |
+
(model_data['wins'] + model_data['losses'], model)
|
93 |
+
for model, model_data in leaderboard.items()
|
94 |
+
)
|
95 |
+
|
96 |
+
highest_win_rate = max(
|
97 |
+
(model_data['wins'] / (model_data['wins'] + model_data['losses']) if (model_data['wins'] + model_data['losses']) > 0 else 0, model)
|
98 |
+
for model, model_data in leaderboard.items()
|
99 |
+
)
|
100 |
+
|
101 |
+
most_diverse_opponent = max(
|
102 |
+
(len(model_data['opponents']), model)
|
103 |
+
for model, model_data in leaderboard.items()
|
104 |
+
)
|
105 |
+
|
106 |
+
# Existing fun stats
|
107 |
+
underdog_champion = min(
|
108 |
+
((get_model_size(model), model_data['wins'] / (model_data['wins'] + model_data['losses'])) if (model_data['wins'] + model_data['losses']) > 0 else (get_model_size(model), 0), model)
|
109 |
+
for model, model_data in leaderboard.items()
|
110 |
+
)
|
111 |
+
|
112 |
+
most_consistent = min(
|
113 |
+
(abs(model_data['wins'] - model_data['losses']), model)
|
114 |
+
for model, model_data in leaderboard.items()
|
115 |
+
if (model_data['wins'] + model_data['losses']) > 10 # Minimum battles threshold
|
116 |
+
)
|
117 |
+
|
118 |
+
biggest_rivalry = max(
|
119 |
+
(results['wins'] + results['losses'], (model, opponent))
|
120 |
+
for model, data in leaderboard.items()
|
121 |
+
for opponent, results in data['opponents'].items()
|
122 |
+
)
|
123 |
+
|
124 |
+
# New fun stats
|
125 |
+
david_vs_goliath = max(
|
126 |
+
((get_model_size(opponent) - get_model_size(model), model_data['opponents'][opponent]['wins']), (model, opponent))
|
127 |
+
for model, model_data in leaderboard.items()
|
128 |
+
for opponent in model_data['opponents']
|
129 |
+
if get_model_size(opponent) > get_model_size(model) and model_data['opponents'][opponent]['wins'] > 0
|
130 |
+
)
|
131 |
+
|
132 |
+
comeback_king = max(
|
133 |
+
(model_data['wins'] - model_data['losses'], model)
|
134 |
+
for model, model_data in leaderboard.items()
|
135 |
+
if model_data['losses'] > model_data['wins']
|
136 |
+
)
|
137 |
+
|
138 |
+
pyrrhic_victor = min(
|
139 |
+
(model_data['wins'] / (model_data['wins'] + model_data['losses']) if (model_data['wins'] + model_data['losses']) > 0 else float('inf'), model)
|
140 |
+
for model, model_data in leaderboard.items()
|
141 |
+
if model_data['wins'] > model_data['losses'] and (model_data['wins'] + model_data['losses']) > 10
|
142 |
+
)
|
143 |
+
|
144 |
+
stats = {
|
145 |
+
"timestamp": timestamp,
|
146 |
+
"total_battles": total_battles,
|
147 |
+
"active_models": active_models,
|
148 |
+
"most_battles": {
|
149 |
+
"model": get_human_readable_name(most_battles[1]),
|
150 |
+
"battles": most_battles[0]
|
151 |
+
},
|
152 |
+
"highest_win_rate": {
|
153 |
+
"model": get_human_readable_name(highest_win_rate[1]),
|
154 |
+
"win_rate": f"{highest_win_rate[0]:.2%}"
|
155 |
+
},
|
156 |
+
"most_diverse_opponent": {
|
157 |
+
"model": get_human_readable_name(most_diverse_opponent[1]),
|
158 |
+
"unique_opponents": most_diverse_opponent[0]
|
159 |
+
},
|
160 |
+
"underdog_champion": {
|
161 |
+
"model": get_human_readable_name(underdog_champion[1]),
|
162 |
+
"size": f"{underdog_champion[0][0]}B",
|
163 |
+
"win_rate": f"{underdog_champion[0][1]:.2%}"
|
164 |
+
},
|
165 |
+
"most_consistent": {
|
166 |
+
"model": get_human_readable_name(most_consistent[1]),
|
167 |
+
"win_loss_difference": most_consistent[0]
|
168 |
+
},
|
169 |
+
"biggest_rivalry": {
|
170 |
+
"model1": get_human_readable_name(biggest_rivalry[1][0]),
|
171 |
+
"model2": get_human_readable_name(biggest_rivalry[1][1]),
|
172 |
+
"total_battles": biggest_rivalry[0]
|
173 |
+
},
|
174 |
+
"david_vs_goliath": {
|
175 |
+
"david": get_human_readable_name(david_vs_goliath[1][0]),
|
176 |
+
"goliath": get_human_readable_name(david_vs_goliath[1][1]),
|
177 |
+
"size_difference": f"{david_vs_goliath[0][0]:.1f}B",
|
178 |
+
"wins": david_vs_goliath[0][1]
|
179 |
+
},
|
180 |
+
"comeback_king": {
|
181 |
+
"model": get_human_readable_name(comeback_king[1]),
|
182 |
+
"comeback_margin": comeback_king[0]
|
183 |
+
},
|
184 |
+
"pyrrhic_victor": {
|
185 |
+
"model": get_human_readable_name(pyrrhic_victor[1]),
|
186 |
+
"win_rate": f"{pyrrhic_victor[0]:.2%}"
|
187 |
+
}
|
188 |
+
}
|
189 |
+
|
190 |
+
return stats
|
191 |
+
|
192 |
+
if __name__ == "__main__":
|
193 |
+
stats = get_internal_stats()
|