k-mktr commited on
Commit
b0ade41
β€’
1 Parent(s): 0c53781

Update leaderboard.py

Browse files
Files changed (1) hide show
  1. leaderboard.py +55 -25
leaderboard.py CHANGED
@@ -70,7 +70,11 @@ def initialize_elo_ratings():
70
 
71
  # Replay all battles to update ELO ratings
72
  for model, data in leaderboard.items():
 
 
73
  for opponent, results in data['opponents'].items():
 
 
74
  for _ in range(results['wins']):
75
  update_elo_ratings(model, opponent)
76
  for _ in range(results['losses']):
@@ -212,28 +216,57 @@ def calculate_elo_impact(model):
212
  leaderboard = load_leaderboard()
213
  initial_rating = 1000 + (get_model_size(model) * 100)
214
 
215
- for opponent, results in leaderboard[model]['opponents'].items():
216
- model_size = get_model_size(model)
217
- opponent_size = get_model_size(opponent)
218
- max_size = max(get_model_size(m) for m, _ in arena_config.APPROVED_MODELS)
219
-
220
- size_difference = (opponent_size - model_size) / max_size
221
-
222
- win_impact = 1 + max(0, size_difference)
223
- loss_impact = 1 + max(0, -size_difference)
224
-
225
- positive_impact += results['wins'] * win_impact
226
- negative_impact += results['losses'] * loss_impact
 
227
 
228
  return round(positive_impact), round(negative_impact), round(initial_rating)
229
 
230
  def get_elo_leaderboard():
231
  ensure_elo_ratings_initialized()
232
  leaderboard = load_leaderboard()
233
- sorted_ratings = sorted(elo_ratings.items(), key=lambda x: x[1], reverse=True)
234
 
235
- min_initial_rating = min(1000 + (get_model_size(model) * 100) for model, _ in arena_config.APPROVED_MODELS)
236
- max_initial_rating = max(1000 + (get_model_size(model) * 100) for model, _ in arena_config.APPROVED_MODELS)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237
 
238
  explanation_elo = f"""
239
  <p style="font-size: 16px; margin-bottom: 20px;">
@@ -276,24 +309,21 @@ def get_elo_leaderboard():
276
  <th>Negative Impact</th>
277
  <th>Total Battles</th>
278
  <th>Initial Rating</th>
279
-
280
  </tr>
281
  """
282
 
283
- for index, (model, rating) in enumerate(sorted_ratings, start=1):
284
- total_battles = leaderboard[model]['wins'] + leaderboard[model]['losses']
285
  rank_display = {1: "πŸ₯‡", 2: "πŸ₯ˆ", 3: "πŸ₯‰"}.get(index, f"{index}")
286
- positive_impact, negative_impact, initial_rating = calculate_elo_impact(model)
287
 
288
  leaderboard_html += f"""
289
  <tr>
290
  <td class='rank-column'>{rank_display}</td>
291
- <td>{get_human_readable_name(model)}</td>
292
- <td><strong>{round(rating)}</strong></td>
293
- <td>{positive_impact}</td>
294
- <td>{negative_impact}</td>
295
- <td>{total_battles}</td>
296
- <td>{initial_rating}</td>
297
  </tr>
298
  """
299
 
 
70
 
71
  # Replay all battles to update ELO ratings
72
  for model, data in leaderboard.items():
73
+ if model not in elo_ratings:
74
+ elo_ratings[model] = 1000 + (get_model_size(model) * 100)
75
  for opponent, results in data['opponents'].items():
76
+ if opponent not in elo_ratings:
77
+ elo_ratings[opponent] = 1000 + (get_model_size(opponent) * 100)
78
  for _ in range(results['wins']):
79
  update_elo_ratings(model, opponent)
80
  for _ in range(results['losses']):
 
216
  leaderboard = load_leaderboard()
217
  initial_rating = 1000 + (get_model_size(model) * 100)
218
 
219
+ if model in leaderboard:
220
+ for opponent, results in leaderboard[model]['opponents'].items():
221
+ model_size = get_model_size(model)
222
+ opponent_size = get_model_size(opponent)
223
+ max_size = max(get_model_size(m) for m, _ in arena_config.APPROVED_MODELS)
224
+
225
+ size_difference = (opponent_size - model_size) / max_size
226
+
227
+ win_impact = 1 + max(0, size_difference)
228
+ loss_impact = 1 + max(0, -size_difference)
229
+
230
+ positive_impact += results['wins'] * win_impact
231
+ negative_impact += results['losses'] * loss_impact
232
 
233
  return round(positive_impact), round(negative_impact), round(initial_rating)
234
 
235
  def get_elo_leaderboard():
236
  ensure_elo_ratings_initialized()
237
  leaderboard = load_leaderboard()
 
238
 
239
+ # Create a list of all models, including those from APPROVED_MODELS that might not be in the leaderboard yet
240
+ all_models = set(dict(arena_config.APPROVED_MODELS).keys()) | set(leaderboard.keys())
241
+
242
+ elo_data = []
243
+ for model in all_models:
244
+ initial_rating = 1000 + (get_model_size(model) * 100)
245
+ current_rating = elo_ratings.get(model, initial_rating)
246
+
247
+ # Calculate battle data only if the model exists in the leaderboard
248
+ if model in leaderboard:
249
+ wins = leaderboard[model].get('wins', 0)
250
+ losses = leaderboard[model].get('losses', 0)
251
+ total_battles = wins + losses
252
+ positive_impact, negative_impact, _ = calculate_elo_impact(model)
253
+ else:
254
+ wins = losses = total_battles = positive_impact = negative_impact = 0
255
+
256
+ elo_data.append({
257
+ 'model': model,
258
+ 'current_rating': current_rating,
259
+ 'initial_rating': initial_rating,
260
+ 'total_battles': total_battles,
261
+ 'positive_impact': positive_impact,
262
+ 'negative_impact': negative_impact
263
+ })
264
+
265
+ # Sort the data by current rating
266
+ sorted_elo_data = sorted(elo_data, key=lambda x: x['current_rating'], reverse=True)
267
+
268
+ min_initial_rating = min(data['initial_rating'] for data in elo_data)
269
+ max_initial_rating = max(data['initial_rating'] for data in elo_data)
270
 
271
  explanation_elo = f"""
272
  <p style="font-size: 16px; margin-bottom: 20px;">
 
309
  <th>Negative Impact</th>
310
  <th>Total Battles</th>
311
  <th>Initial Rating</th>
 
312
  </tr>
313
  """
314
 
315
+ for index, data in enumerate(sorted_elo_data, start=1):
 
316
  rank_display = {1: "πŸ₯‡", 2: "πŸ₯ˆ", 3: "πŸ₯‰"}.get(index, f"{index}")
 
317
 
318
  leaderboard_html += f"""
319
  <tr>
320
  <td class='rank-column'>{rank_display}</td>
321
+ <td>{get_human_readable_name(data['model'])}</td>
322
+ <td><strong>{round(data['current_rating'])}</strong></td>
323
+ <td>{data['positive_impact']}</td>
324
+ <td>{data['negative_impact']}</td>
325
+ <td>{data['total_battles']}</td>
326
+ <td>{round(data['initial_rating'])}</td>
327
  </tr>
328
  """
329