File size: 3,417 Bytes
2e7292b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Copyright      2022-2024  Xiaomi Corp.        (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import wave
from functools import lru_cache
from typing import Tuple, List

import numpy as np
import sherpa_onnx

from huggingface_hub import hf_hub_download

sample_rate = 16000


def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]:
    """
    Args:
      wave_filename:
        Path to a wave file. It should be single channel and each sample should
        be 16-bit. Its sample rate does not need to be 16kHz.
    Returns:
      Return a tuple containing:
       - A 1-D array of dtype np.float32 containing the samples, which are
       normalized to the range [-1, 1].
       - sample rate of the wave file
    """

    with wave.open(wave_filename) as f:
        assert f.getnchannels() == 1, f.getnchannels()
        assert f.getsampwidth() == 2, f.getsampwidth()  # it is in bytes
        num_samples = f.getnframes()
        samples = f.readframes(num_samples)
        samples_int16 = np.frombuffer(samples, dtype=np.int16)
        samples_float32 = samples_int16.astype(np.float32)

        samples_float32 = samples_float32 / 32768
        return samples_float32, f.getframerate()


def decode(
    tagger: sherpa_onnx.AudioTagging,
    filename: str,
    top_k: int = -1,
) -> List[sherpa_onnx.AudioEvent]:
    s = tagger.create_stream()
    samples, sample_rate = read_wave(filename)
    s.accept_waveform(sample_rate, samples)
    events = tagger.compute(s, top_k)
    return events


def _get_nn_model_filename(
    repo_id: str,
    filename: str,
    subfolder: str = ".",
) -> str:
    nn_model_filename = hf_hub_download(
        repo_id=repo_id,
        filename=filename,
        subfolder=subfolder,
    )
    return nn_model_filename


@lru_cache(maxsize=8)
def get_pretrained_model(repo_id: str) -> sherpa_onnx.AudioTagging:
    assert repo_id in (
        "k2-fsa/sherpa-onnx-zipformer-small-audio-tagging-2024-04-15",
        "k2-fsa/sherpa-onnx-zipformer-audio-tagging-2024-04-09",
    ), repo_id

    model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="model.int8.onnx",
    )

    labels = _get_nn_model_filename(
        repo_id=repo_id,
        filename="class_labels_indices.csv",
    )

    config = sherpa_onnx.AudioTaggingConfig(
        model=sherpa_onnx.AudioTaggingModelConfig(
            zipformer=sherpa_onnx.OfflineZipformerAudioTaggingModelConfig(
                model=model,
            ),
            num_threads=1,
            debug=True,
            provider="cpu",
        ),
        labels=labels,
        top_k=5,
    )
    return sherpa_onnx.AudioTagging(config)


models = {
    "k2-fsa/sherpa-onnx-zipformer-audio-tagging-2024-04-09": get_pretrained_model,
    "k2-fsa/sherpa-onnx-zipformer-small-audio-tagging-2024-04-15": get_pretrained_model,
}