Spaces:
Running
Running
#!/usr/bin/env python3 | |
# | |
# Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang) | |
# | |
# See LICENSE for clarification regarding multiple authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# References: | |
# https://gradio.app/docs/#dropdown | |
import logging | |
import os | |
import time | |
import uuid | |
import gradio as gr | |
import soundfile as sf | |
from model import get_pretrained_model, language_to_models | |
title = "# Next-gen Kaldi: Text-to-speech (TTS)" | |
description = """ | |
This space shows how to convert text to speech with Next-gen Kaldi. | |
It is running on CPU within a docker container provided by Hugging Face. | |
See more information by visiting the following links: | |
- <https://github.com/k2-fsa/sherpa-onnx> | |
If you want to deploy it locally, please see | |
<https://k2-fsa.github.io/sherpa/> | |
If you want to use Android APKs, please see | |
<https://k2-fsa.github.io/sherpa/onnx/tts/apk.html> | |
If you want to download an all-in-one exe for Windows, please see | |
<https://github.com/k2-fsa/sherpa-onnx/releases/tag/tts-models> | |
""" | |
# css style is copied from | |
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113 | |
css = """ | |
.result {display:flex;flex-direction:column} | |
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} | |
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start} | |
.result_item_error {background-color:#ff7070;color:white;align-self:start} | |
""" | |
def update_model_dropdown(language: str): | |
if language in language_to_models: | |
choices = language_to_models[language] | |
return gr.Dropdown.update(choices=choices, value=choices[0]) | |
raise ValueError(f"Unsupported language: {language}") | |
def build_html_output(s: str, style: str = "result_item_success"): | |
return f""" | |
<div class='result'> | |
<div class='result_item {style}'> | |
{s} | |
</div> | |
</div> | |
""" | |
def process(language: str, repo_id: str, text: str, sid: str, speed: float): | |
logging.info(f"Input text: {text}. sid: {sid}, speed: {speed}") | |
sid = int(sid) | |
tts = get_pretrained_model(repo_id, speed) | |
start = time.time() | |
audio = tts.generate(text, sid=sid) | |
end = time.time() | |
if len(audio.samples) == 0: | |
raise ValueError( | |
"Error in generating audios. Please read previous error messages." | |
) | |
duration = len(audio.samples) / audio.sample_rate | |
elapsed_seconds = end - start | |
rtf = elapsed_seconds / duration | |
info = f""" | |
Wave duration : {duration:.3f} s <br/> | |
Processing time: {elapsed_seconds:.3f} s <br/> | |
RTF: {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f} <br/> | |
""" | |
logging.info(info) | |
logging.info(f"\nrepo_id: {repo_id}\ntext: {text}\nsid: {sid}\nspeed: {speed}") | |
filename = str(uuid.uuid4()) | |
filename = f"{filename}.wav" | |
sf.write( | |
filename, | |
audio.samples, | |
samplerate=audio.sample_rate, | |
subtype="PCM_16", | |
) | |
return filename, build_html_output(info) | |
demo = gr.Blocks(css=css) | |
with demo: | |
gr.Markdown(title) | |
language_choices = list(language_to_models.keys()) | |
language_radio = gr.Radio( | |
label="Language", | |
choices=language_choices, | |
value=language_choices[0], | |
) | |
model_dropdown = gr.Dropdown( | |
choices=language_to_models[language_choices[0]], | |
label="Select a model", | |
value=language_to_models[language_choices[0]][0], | |
) | |
language_radio.change( | |
update_model_dropdown, | |
inputs=language_radio, | |
outputs=model_dropdown, | |
) | |
with gr.Tabs(): | |
with gr.TabItem("Please input your text"): | |
input_text = gr.Textbox( | |
label="Input text", | |
info="Your text", | |
lines=3, | |
placeholder="Please input your text here", | |
) | |
input_sid = gr.Textbox( | |
label="Speaker ID", | |
info="Speaker ID", | |
lines=1, | |
max_lines=1, | |
value="0", | |
placeholder="Speaker ID. Valid only for mult-speaker model", | |
) | |
input_speed = gr.Slider( | |
minimum=0.1, | |
maximum=10, | |
value=1, | |
step=0.1, | |
label="Speed (larger->faster; smaller->slower)", | |
) | |
input_button = gr.Button("Submit") | |
output_audio = gr.Audio(label="Output") | |
output_info = gr.HTML(label="Info") | |
input_button.click( | |
process, | |
inputs=[ | |
language_radio, | |
model_dropdown, | |
input_text, | |
input_sid, | |
input_speed, | |
], | |
outputs=[ | |
output_audio, | |
output_info, | |
], | |
) | |
gr.Markdown(description) | |
def download_espeak_ng_data(): | |
os.system( | |
""" | |
cd /tmp | |
wget -qq https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2 | |
tar xf espeak-ng-data.tar.bz2 | |
""" | |
) | |
if __name__ == "__main__": | |
download_espeak_ng_data() | |
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" | |
logging.basicConfig(format=formatter, level=logging.INFO) | |
demo.launch() | |