File size: 10,440 Bytes
da27d7f e5fe9d2 da27d7f 8ef9b69 da27d7f a0cbdfb 05eb9ce a0cbdfb da27d7f 8ef9b69 da27d7f d22e826 da27d7f d22e826 da27d7f 829d976 da27d7f fbbfce6 829d976 fbbfce6 829d976 fbbfce6 829d976 a0cbdfb e1cd27e 8ef9b69 829d976 da27d7f 829d976 da27d7f 829d976 da27d7f 829d976 da27d7f 8ef9b69 03c75c9 da27d7f 829d976 73c21f4 da27d7f 73c21f4 829d976 da27d7f 73c21f4 d1edbcf 73c21f4 0a32f1f da27d7f 73c21f4 e583657 da27d7f e583657 73c21f4 e583657 73c21f4 e583657 da27d7f e583657 da27d7f 8ef9b69 ed63ae6 8ef9b69 73c21f4 829d976 a0cbdfb da27d7f a0cbdfb da27d7f a0cbdfb da27d7f 8ef9b69 da27d7f 829d976 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import argparse
import os
import sys
import time
import uvicorn
import requests
import asyncio
from pathlib import Path
from fastapi import FastAPI, Depends, HTTPException
from fastapi.responses import HTMLResponse
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel, Field
from typing import Union, List
from sse_starlette.sse import EventSourceResponse, ServerSentEvent
from utils.logger import logger
from networks.message_streamer import MessageStreamer
from messagers.message_composer import MessageComposer
from mocks.stream_chat_mocker import stream_chat_mock
from fastapi.middleware.cors import CORSMiddleware
class ChatAPIApp:
def __init__(self):
self.app = FastAPI(
docs_url="/",
title="HuggingFace LLM API",
swagger_ui_parameters={"defaultModelsExpandDepth": -1},
version="1.0",
)
self.setup_routes()
self.app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # You can specify specific origins here
allow_credentials=True,
allow_methods=["*"], # Or specify just the methods you need: ["GET", "POST"]
allow_headers=["*"], # Or specify headers you need
)
def get_available_models(self):
# https://platform.openai.com/docs/api-reference/models/list
# ANCHOR[id=available-models]: Available models
current_time = int(time.time())
self.available_models = {
"object": "list",
"data": [
{
"id": "mixtral-8x7b",
"description": "[mistralai/Mixtral-8x7B-Instruct-v0.1]: https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1",
"object": "model",
"created": current_time,
"owned_by": "mistralai",
},
{
"id": "mistral-7b",
"description": "[mistralai/Mistral-7B-Instruct-v0.2]: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2",
"object": "model",
"created": current_time,
"owned_by": "mistralai",
},
{
"id": "nous-mixtral-8x7b",
"description": "[NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO]: https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"object": "model",
"created": current_time,
"owned_by": "NousResearch",
},
{
"id": "gemma-7b",
"description": "[google/gemma-7b-it]: https://huggingface.co/google/gemma-7b-it",
"object": "model",
"created": current_time,
"owned_by": "Google",
},
{
"id": "codellama-7b",
"description": "[codellama/CodeLlama-7b-hf]: https://huggingface.co/codellama/CodeLlama-7b-hf",
"object": "model",
"created": current_time,
"owned_by": "codellama",
},
{
"id": "bert-base-uncased",
"description": "[google-bert/bert-base-uncased]: https://huggingface.co/google-bert/bert-base-uncased",
"object": "embedding",
"created": current_time,
"owned_by": "google",
},
],
}
return self.available_models
def extract_api_key(
credentials: HTTPAuthorizationCredentials = Depends(
HTTPBearer(auto_error=False)
),
):
api_key = None
if credentials:
api_key = credentials.credentials
else:
api_key = os.getenv("HF_TOKEN")
if api_key:
if api_key.startswith("hf_"):
return api_key
else:
logger.warn(f"Invalid HF Token!")
else:
logger.warn("Not provide HF Token!")
return None
class QueryRequest(BaseModel):
texts: List[str]
model_name: str = Field(..., example="bert-base-uncased")
api_key: str = Field(..., example="your_hf_api_key_here")
async def send_request_to_hugging_face(texts, model_name, api_key):
api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_name}"
headers = {"Authorization": f"Bearer {api_key}"}
response = requests.post(api_url, headers=headers, json={"inputs": texts})
result = response.json()
if isinstance(result, list) and len(result) > 0 and isinstance(result[0], list):
return result
elif "error" in result:
raise RuntimeError("The model is currently loading, please re-run the query.")
else:
raise RuntimeError("Unexpected response format.")
class ChatCompletionsPostItem(BaseModel):
model: str = Field(
default="mixtral-8x7b",
description="(str) `mixtral-8x7b`",
)
messages: list = Field(
default=[{"role": "user", "content": "Hello, who are you?"}],
description="(list) Messages",
)
temperature: Union[float, None] = Field(
default=0.5,
description="(float) Temperature",
)
top_p: Union[float, None] = Field(
default=0.95,
description="(float) top p",
)
max_tokens: Union[int, None] = Field(
default=-1,
description="(int) Max tokens",
)
use_cache: bool = Field(
default=False,
description="(bool) Use cache",
)
stream: bool = Field(
default=False,
description="(bool) Stream",
)
def chat_completions(
self, item: ChatCompletionsPostItem, api_key: str = Depends(extract_api_key)
):
streamer = MessageStreamer(model=item.model)
composer = MessageComposer(model=item.model)
composer.merge(messages=item.messages)
# streamer.chat = stream_chat_mock
stream_response = streamer.chat_response(
prompt=composer.merged_str,
temperature=item.temperature,
top_p=item.top_p,
max_new_tokens=item.max_tokens,
api_key=api_key,
use_cache=item.use_cache,
)
if item.stream:
event_source_response = EventSourceResponse(
streamer.chat_return_generator(stream_response),
media_type="text/event-stream",
ping=2000,
ping_message_factory=lambda: ServerSentEvent(**{"comment": ""}),
)
return event_source_response
else:
data_response = streamer.chat_return_dict(stream_response)
return data_response
async def embedding(request: QueryRequest):
try:
for attempt in range(3): # Retry logic
try:
embeddings = await send_request_to_hugging_face(request.texts, request.model_name, request.api_key)
data = [
{"object": "embedding", "index": i, "embedding": embedding}
for i, embedding in enumerate(embeddings)
]
return {
"object": "list",
"data": data,
"model": request.model_name,
"usage": {"prompt_tokens": len(request.texts), "total_tokens": len(request.texts)}
}
except RuntimeError as e:
if attempt < 2: # Don't sleep on the last attempt
await asyncio.sleep(10) # Delay for the retry
raise HTTPException(status_code=503, detail="The model is currently loading, please try again later.")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
def setup_routes(self):
for prefix in ["", "/v1", "/api", "/api/v1"]:
if prefix in ["/api/v1"]:
include_in_schema = True
else:
include_in_schema = False
self.app.get(
prefix + "/models",
summary="Get available models",
include_in_schema=include_in_schema,
)(self.get_available_models)
self.app.post(
prefix + "/chat/completions",
summary="Chat completions in conversation session",
include_in_schema=include_in_schema,
)(self.chat_completions)
if prefix in ["/v1"]:
include_in_schema = True
else:
include_in_schema = False
self.app.post(
prefix + "/embedding", # Use the specific prefix for this route
summary="Generate embeddings for the given texts",
include_in_schema=include_in_schema,
response_model=List # Adapt based on your actual response model
)(self.embedding)
class ArgParser(argparse.ArgumentParser):
def __init__(self, *args, **kwargs):
super(ArgParser, self).__init__(*args, **kwargs)
self.add_argument(
"-s",
"--server",
type=str,
default="0.0.0.0",
help="Server IP for HF LLM Chat API",
)
self.add_argument(
"-p",
"--port",
type=int,
default=23333,
help="Server Port for HF LLM Chat API",
)
self.add_argument(
"-d",
"--dev",
default=False,
action="store_true",
help="Run in dev mode",
)
self.args = self.parse_args(sys.argv[1:])
app = ChatAPIApp().app
if __name__ == "__main__":
args = ArgParser().args
if args.dev:
uvicorn.run("__main__:app", host=args.server, port=args.port, reload=True)
else:
uvicorn.run("__main__:app", host=args.server, port=args.port, reload=False)
# python -m apis.chat_api # [Docker] on product mode
# python -m apis.chat_api -d # [Dev] on develop mode |