|
import os |
|
from googleapiclient.discovery import build |
|
from lang import G4F |
|
from fastapi import FastAPI, Request, Path |
|
from pydantic import BaseModel |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from ImageCreator import generate_image_prodia |
|
|
|
app = FastAPI() |
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_credentials=True, |
|
allow_origins=["*"], |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
|
|
google_api_key = os.environ["GOOGLE_API_KEY"] |
|
cse_id = os.environ["GOOGLE_CSE_ID"] |
|
model = os.environ['default_model'] |
|
|
|
def search_google(query): |
|
service = build("customsearch", "v1", developerKey=google_api_key) |
|
result = service.cse().list( |
|
q=query, |
|
cx=cse_id |
|
).execute() |
|
return result['items'] |
|
|
|
|
|
@app.get("/") |
|
def hello(): |
|
return "Hello! My name is Linlada." |
|
|
|
|
|
|
|
def gpt_with_google_search(prompt): |
|
search_results = search_google(prompt) |
|
text = "" |
|
ref = "" |
|
for item in search_results: |
|
text += item['title'] + "\n" + item['snippet'] + "\n\n" |
|
ref += "- {} ({})\n".format(item['title'], item['link']) |
|
results = generate_text(f'Summarize: {text}') |
|
res = "{} \n\n {}".format(results, ref) |
|
return res |
|
|
|
def gpt_with_google_search(prompt): |
|
search_results = search_google(prompt) |
|
text = "" |
|
ref = "" |
|
ref_count = 1 |
|
for item in search_results: |
|
text += item['title'] + "\n" + item['snippet'] + "\n\n" |
|
ref += " [{}] {} ({})\n".format(ref_count, item['title'], item['link']) |
|
ref_count += 1 |
|
results = generate_text(f'Summarize: {text}') |
|
res = "{} \n\n{}".format(results, ref) |
|
return res |
|
|
|
class Linlada(BaseModel): |
|
prompt: str |
|
web_access: str = None |
|
model: str = None |
|
|
|
|
|
|
|
@app.post('/linlada') |
|
def linlada(request: Linlada): |
|
prompt = request.prompt |
|
model = request.model |
|
web_access = request.web_access |
|
llm = G4F(model=model) |
|
if web_access == "None": |
|
chat = llm(prompt) |
|
else: |
|
chat = gpt_with_google_search(prompt) |
|
return chat |
|
|
|
|
|
class User(BaseModel): |
|
prompt: str |
|
model: str = None |
|
sampler: str = None |
|
seed: int = None |
|
neg: str = None |
|
|
|
@app.post("/imagen") |
|
def generate_image(request: User): |
|
prompt = request.prompt |
|
model = request.model |
|
sampler = request.sampler |
|
seed = request.seed |
|
neg = request.neg |
|
|
|
response = generate_image_prodia(prompt, model, sampler, seed, neg) |
|
return {"image": response} |
|
|
|
|
|
details = { |
|
1: {'Absolute Reality V1.6': 'absolutereality_V16.safetensors [37db0fc3]', |
|
'Analog V1': 'analog-diffusion-1.0.ckpt [9ca13f02]', |
|
'Anything V3': 'anythingv3_0-pruned.ckpt [2700c435]', |
|
'Anything V4.5': 'anything-v4.5-pruned.ckpt [65745d25]', |
|
'Anything V5': 'anythingV5_PrtRE.safetensors [893e49b9]', |
|
'AbyssOrangeMix V3': 'AOM3A3_orangemixs.safetensors [9600da17]', |
|
'Deliberate V2': 'deliberate_v2.safetensors [10ec4b29]', |
|
'Dreamlike Diffusion V1': 'dreamlike-diffusion-1.0.safetensors [5c9fd6e0]', |
|
'Dreamlike Diffusion V2': 'dreamlike-diffusion-2.0.safetensors [fdcf65e7]', |
|
'Dreamshaper 6 baked vae': 'dreamshaper_6BakedVae.safetensors [114c8abb]', |
|
'Dreamshaper 7': 'dreamshaper_7.safetensors [5cf5ae06]', |
|
'Dreamshaper 8': 'dreamshaper_8.safetensors [9d40847d]', |
|
'Eimis Anime Diffusion V1.0': 'EimisAnimeDiffusion_V1.ckpt [4f828a15]', |
|
"Elldreth's Vivid": 'elldreths-vivid-mix.safetensors [342d9d26]', |
|
'Lyriel V1.6': 'lyriel_v16.safetensors [68fceea2]', |
|
'MechaMix V1.0': 'mechamix_v10.safetensors [ee685731]', |
|
'MeinaMix Meina V9': 'meinamix_meinaV9.safetensors [2ec66ab0]', |
|
'MeinaMix Meina V11': 'meinamix_meinaV11.safetensors [b56ce717]', |
|
'Openjourney V4': 'openjourney_V4.ckpt [ca2f377f]', |
|
'Portrait+ V1': 'portraitplus_V1.0.safetensors [1400e684]', |
|
'Realistic Vision V1.4': 'Realistic_Vision_V1.4-pruned-fp16.safetensors [8d21810b]', |
|
'Realistic Vision V4.0': 'Realistic_Vision_V4.0.safetensors [29a7afaa]', |
|
'Realistic Vision V5.0': 'Realistic_Vision_V5.0.safetensors [614d1063]', |
|
'Redshift Diffusion V1.0': 'redshift_diffusion-V10.safetensors [1400e684]', |
|
'ReV Animated V1.2.2': 'revAnimated_v122.safetensors [3f4fefd9]', |
|
'SD V1.4': 'sdv1_4.ckpt [7460a6fa]', |
|
'SD V1.5': 'v1-5-pruned-emaonly.ckpt [81761151]', |
|
"Shonin's Beautiful People V1.0": 'shoninsBeautiful_v10.safetensors [25d8c546]', |
|
"TheAlly's Mix II": 'theallys-mix-ii-churned.safetensors [5d9225a4]', |
|
'Timeless V1': 'timeless-1.0.ckpt [7c4971d4]' |
|
}, |
|
2: { |
|
'Euler': 'Euler', |
|
'Euler a': 'Euler a', |
|
'Heun': 'Heun', |
|
'DPM++ 2M Karras': 'DPM++ 2M Karras', |
|
'DPM++ SDE Karras': 'DPM++ SDE Karras', |
|
'DDIM': 'DDIM' |
|
} |
|
} |
|
|
|
@app.get("/imagen-details/{detail_id}") |
|
def image_detail(detail_id: int = Path(None, description="The ID of 1.model id and 2.sampler id", gt=0, lt=3)): |
|
return details[detail_id] |
|
|
|
class Test(BaseModel): |
|
prompt: str |
|
model: str = None |
|
neg: str = None |
|
|
|
@app.post("/test") |
|
def test(request: Test): |
|
return {'data': f'Prompt is {request.prompt} Model is {request.model} Neg is {request.neg}'} |
|
|
|
|