Spaces:
Runtime error
Runtime error
kabita-choudhary
commited on
Commit
·
bb2fe0d
1
Parent(s):
161d598
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from transformers import pipeline
|
4 |
+
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
|
5 |
+
|
6 |
+
|
7 |
+
def summarize(data, modelname):
|
8 |
+
if (modelname == 'Bart'):
|
9 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
10 |
+
print("world")
|
11 |
+
output = summarizer(data, max_length=130, min_length=30, do_sample=False)
|
12 |
+
return output[0]["summary_text"]
|
13 |
+
elif (modelname == 'Pegasus'):
|
14 |
+
model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
|
15 |
+
tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-xsum")
|
16 |
+
|
17 |
+
# Create tokens - number representation of our text
|
18 |
+
tokens = tokenizer(data, truncation=True, padding="longest", return_tensors="pt")
|
19 |
+
summary = model.generate(**tokens)
|
20 |
+
return tokenizer.decode(summary[0])
|
21 |
+
|
22 |
+
|
23 |
+
st.sidebar.title("Text Summarization")
|
24 |
+
|
25 |
+
uploaded_file = st.sidebar.file_uploader("Choose a file")
|
26 |
+
data = ""
|
27 |
+
output = ""
|
28 |
+
if uploaded_file is not None:
|
29 |
+
# To read file as bytes:
|
30 |
+
bytes_data = uploaded_file.getvalue()
|
31 |
+
|
32 |
+
data = bytes_data.decode("utf-8")
|
33 |
+
modelname = st.sidebar.radio("Choose your model",
|
34 |
+
["Bart", "Pegasus"],
|
35 |
+
help=" you can choose between 2 models (Bart or Pegasus) to summarize your text. More to come!", )
|
36 |
+
col1, col2 = st.columns(2)
|
37 |
+
|
38 |
+
with col1:
|
39 |
+
st.header("Copy paste your text or Upload file")
|
40 |
+
if (uploaded_file is not None):
|
41 |
+
with st.expander("Text to summarize", expanded=True):
|
42 |
+
st.write(
|
43 |
+
data
|
44 |
+
)
|
45 |
+
else:
|
46 |
+
with st.expander("Text to summarize", expanded=True):
|
47 |
+
data = st.text_area("Paste your text below (max 500 words)", height=510, )
|
48 |
+
|
49 |
+
MAX_WORDS = 500
|
50 |
+
import re
|
51 |
+
|
52 |
+
res = len(re.findall(r"\w+", data))
|
53 |
+
if res > MAX_WORDS:
|
54 |
+
st.warning(
|
55 |
+
"⚠️ Your text contains "
|
56 |
+
+ str(res)
|
57 |
+
+ " words."
|
58 |
+
+ " Only the first 500 words will be reviewed. Stay tuned as increased allowance is coming! 😊")
|
59 |
+
data = data[:MAX_WORDS]
|
60 |
+
Summarizebtn = st.button("Summarize")
|
61 |
+
if (Summarizebtn):
|
62 |
+
output = summarize(data, modelname)
|
63 |
+
|
64 |
+
with col2:
|
65 |
+
st.header("Summary")
|
66 |
+
if (len(output) > 0):
|
67 |
+
with st.expander("", expanded=True):
|
68 |
+
st.write(output)
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|