Spaces:
Building
on
A10G
Building
on
A10G
upload upscale model
Browse files- diffusion_webui/__init__.py +1 -1
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_canny.py +13 -9
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_depth.py +12 -9
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_hed.py +13 -10
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_mlsd.py +14 -11
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_pose.py +14 -10
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_scribble.py +17 -10
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_seg.py +4 -3
- diffusion_webui/helpers.py +3 -0
- diffusion_webui/upscaler_models/codeformer_upscaler.py +84 -0
- diffusion_webui/utils/model_list.py +1 -1
diffusion_webui/__init__.py
CHANGED
@@ -1 +1 @@
|
|
1 |
-
__version__ = "1.
|
|
|
1 |
+
__version__ = "1.8.0"
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_canny.py
CHANGED
@@ -3,9 +3,11 @@ import gradio as gr
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
from diffusers import ControlNetModel
|
6 |
-
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
|
7 |
from PIL import Image
|
8 |
|
|
|
|
|
|
|
9 |
from diffusion_webui.utils.model_list import (
|
10 |
controlnet_canny_model_list,
|
11 |
stable_inpiant_model_list,
|
@@ -27,11 +29,13 @@ class StableDiffusionControlNetInpaintCannyGenerator:
|
|
27 |
controlnet = ControlNetModel.from_pretrained(
|
28 |
controlnet_model_path, torch_dtype=torch.float16
|
29 |
)
|
30 |
-
self.pipe =
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
35 |
)
|
36 |
|
37 |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
@@ -39,7 +43,7 @@ class StableDiffusionControlNetInpaintCannyGenerator:
|
|
39 |
self.pipe.enable_xformers_memory_efficient_attention()
|
40 |
|
41 |
return self.pipe
|
42 |
-
|
43 |
def load_image(self, image_path):
|
44 |
image = np.array(image_path)
|
45 |
image = Image.fromarray(image)
|
@@ -76,10 +80,10 @@ class StableDiffusionControlNetInpaintCannyGenerator:
|
|
76 |
|
77 |
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
78 |
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
79 |
-
|
80 |
normal_image = self.load_image(image_path=normal_image)
|
81 |
mask_image = self.load_image(image_path=mask_image)
|
82 |
-
|
83 |
control_image = self.controlnet_canny_inpaint(image_path=image_path)
|
84 |
pipe = self.load_model(
|
85 |
stable_model_path=stable_model_path,
|
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
from diffusers import ControlNetModel
|
|
|
6 |
from PIL import Image
|
7 |
|
8 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import (
|
9 |
+
StableDiffusionControlNetInpaintPipeline,
|
10 |
+
)
|
11 |
from diffusion_webui.utils.model_list import (
|
12 |
controlnet_canny_model_list,
|
13 |
stable_inpiant_model_list,
|
|
|
29 |
controlnet = ControlNetModel.from_pretrained(
|
30 |
controlnet_model_path, torch_dtype=torch.float16
|
31 |
)
|
32 |
+
self.pipe = (
|
33 |
+
StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
34 |
+
pretrained_model_name_or_path=stable_model_path,
|
35 |
+
controlnet=controlnet,
|
36 |
+
safety_checker=None,
|
37 |
+
torch_dtype=torch.float16,
|
38 |
+
)
|
39 |
)
|
40 |
|
41 |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
|
|
43 |
self.pipe.enable_xformers_memory_efficient_attention()
|
44 |
|
45 |
return self.pipe
|
46 |
+
|
47 |
def load_image(self, image_path):
|
48 |
image = np.array(image_path)
|
49 |
image = Image.fromarray(image)
|
|
|
80 |
|
81 |
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
82 |
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
83 |
+
|
84 |
normal_image = self.load_image(image_path=normal_image)
|
85 |
mask_image = self.load_image(image_path=mask_image)
|
86 |
+
|
87 |
control_image = self.controlnet_canny_inpaint(image_path=image_path)
|
88 |
pipe = self.load_model(
|
89 |
stable_model_path=stable_model_path,
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_depth.py
CHANGED
@@ -2,10 +2,12 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from diffusers import ControlNetModel
|
5 |
-
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
|
6 |
from PIL import Image
|
7 |
from transformers import pipeline
|
8 |
|
|
|
|
|
|
|
9 |
from diffusion_webui.utils.model_list import (
|
10 |
controlnet_depth_model_list,
|
11 |
stable_inpiant_model_list,
|
@@ -27,11 +29,13 @@ class StableDiffusionControlInpaintNetDepthGenerator:
|
|
27 |
controlnet = ControlNetModel.from_pretrained(
|
28 |
controlnet_model_path, torch_dtype=torch.float16
|
29 |
)
|
30 |
-
self.pipe =
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
35 |
)
|
36 |
|
37 |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
@@ -72,10 +76,10 @@ class StableDiffusionControlInpaintNetDepthGenerator:
|
|
72 |
):
|
73 |
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
74 |
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
75 |
-
|
76 |
normal_image = self.load_image(image_path=normal_image)
|
77 |
mask_image = self.load_image(image_path=mask_image)
|
78 |
-
|
79 |
control_image = self.controlnet_inpaint_depth(image_path=image_path)
|
80 |
|
81 |
pipe = self.load_model(
|
@@ -92,7 +96,6 @@ class StableDiffusionControlInpaintNetDepthGenerator:
|
|
92 |
|
93 |
output = pipe(
|
94 |
prompt=prompt,
|
95 |
-
|
96 |
image=normal_image,
|
97 |
mask_image=mask_image,
|
98 |
control_image=control_image,
|
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from diffusers import ControlNetModel
|
|
|
5 |
from PIL import Image
|
6 |
from transformers import pipeline
|
7 |
|
8 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import (
|
9 |
+
StableDiffusionControlNetInpaintPipeline,
|
10 |
+
)
|
11 |
from diffusion_webui.utils.model_list import (
|
12 |
controlnet_depth_model_list,
|
13 |
stable_inpiant_model_list,
|
|
|
29 |
controlnet = ControlNetModel.from_pretrained(
|
30 |
controlnet_model_path, torch_dtype=torch.float16
|
31 |
)
|
32 |
+
self.pipe = (
|
33 |
+
StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
34 |
+
pretrained_model_name_or_path=stable_model_path,
|
35 |
+
controlnet=controlnet,
|
36 |
+
safety_checker=None,
|
37 |
+
torch_dtype=torch.float16,
|
38 |
+
)
|
39 |
)
|
40 |
|
41 |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
|
|
76 |
):
|
77 |
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
78 |
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
79 |
+
|
80 |
normal_image = self.load_image(image_path=normal_image)
|
81 |
mask_image = self.load_image(image_path=mask_image)
|
82 |
+
|
83 |
control_image = self.controlnet_inpaint_depth(image_path=image_path)
|
84 |
|
85 |
pipe = self.load_model(
|
|
|
96 |
|
97 |
output = pipe(
|
98 |
prompt=prompt,
|
|
|
99 |
image=normal_image,
|
100 |
mask_image=mask_image,
|
101 |
control_image=control_image,
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_hed.py
CHANGED
@@ -3,8 +3,11 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from controlnet_aux import HEDdetector
|
5 |
from diffusers import ControlNetModel
|
6 |
-
from
|
7 |
|
|
|
|
|
|
|
8 |
from diffusion_webui.utils.model_list import (
|
9 |
controlnet_hed_model_list,
|
10 |
stable_inpiant_model_list,
|
@@ -13,7 +16,6 @@ from diffusion_webui.utils.scheduler_list import (
|
|
13 |
SCHEDULER_LIST,
|
14 |
get_scheduler_list,
|
15 |
)
|
16 |
-
from PIL import Image
|
17 |
|
18 |
# https://github.com/mikonvergence/ControlNetInpaint
|
19 |
|
@@ -27,11 +29,13 @@ class StableDiffusionControlNetInpaintHedGenerator:
|
|
27 |
controlnet = ControlNetModel.from_pretrained(
|
28 |
controlnet_model_path, torch_dtype=torch.float16
|
29 |
)
|
30 |
-
self.pipe =
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
35 |
)
|
36 |
|
37 |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
@@ -45,7 +49,6 @@ class StableDiffusionControlNetInpaintHedGenerator:
|
|
45 |
image = Image.fromarray(image)
|
46 |
return image
|
47 |
|
48 |
-
|
49 |
def controlnet_inpaint_hed(self, image_path: str):
|
50 |
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")
|
51 |
image = image_path["image"].convert("RGB").resize((512, 512))
|
@@ -70,10 +73,10 @@ class StableDiffusionControlNetInpaintHedGenerator:
|
|
70 |
):
|
71 |
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
72 |
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
73 |
-
|
74 |
normal_image = self.load_image(image_path=normal_image)
|
75 |
mask_image = self.load_image(image_path=mask_image)
|
76 |
-
|
77 |
control_image = self.controlnet_inpaint_hed(image_path=image_path)
|
78 |
|
79 |
pipe = self.load_model(
|
|
|
3 |
import torch
|
4 |
from controlnet_aux import HEDdetector
|
5 |
from diffusers import ControlNetModel
|
6 |
+
from PIL import Image
|
7 |
|
8 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import (
|
9 |
+
StableDiffusionControlNetInpaintPipeline,
|
10 |
+
)
|
11 |
from diffusion_webui.utils.model_list import (
|
12 |
controlnet_hed_model_list,
|
13 |
stable_inpiant_model_list,
|
|
|
16 |
SCHEDULER_LIST,
|
17 |
get_scheduler_list,
|
18 |
)
|
|
|
19 |
|
20 |
# https://github.com/mikonvergence/ControlNetInpaint
|
21 |
|
|
|
29 |
controlnet = ControlNetModel.from_pretrained(
|
30 |
controlnet_model_path, torch_dtype=torch.float16
|
31 |
)
|
32 |
+
self.pipe = (
|
33 |
+
StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
34 |
+
pretrained_model_name_or_path=stable_model_path,
|
35 |
+
controlnet=controlnet,
|
36 |
+
safety_checker=None,
|
37 |
+
torch_dtype=torch.float16,
|
38 |
+
)
|
39 |
)
|
40 |
|
41 |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
|
|
49 |
image = Image.fromarray(image)
|
50 |
return image
|
51 |
|
|
|
52 |
def controlnet_inpaint_hed(self, image_path: str):
|
53 |
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")
|
54 |
image = image_path["image"].convert("RGB").resize((512, 512))
|
|
|
73 |
):
|
74 |
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
75 |
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
76 |
+
|
77 |
normal_image = self.load_image(image_path=normal_image)
|
78 |
mask_image = self.load_image(image_path=mask_image)
|
79 |
+
|
80 |
control_image = self.controlnet_inpaint_hed(image_path=image_path)
|
81 |
|
82 |
pipe = self.load_model(
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_mlsd.py
CHANGED
@@ -3,8 +3,11 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from controlnet_aux import MLSDdetector
|
5 |
from diffusers import ControlNetModel
|
6 |
-
from
|
7 |
|
|
|
|
|
|
|
8 |
from diffusion_webui.utils.model_list import (
|
9 |
controlnet_mlsd_model_list,
|
10 |
stable_inpiant_model_list,
|
@@ -13,7 +16,6 @@ from diffusion_webui.utils.scheduler_list import (
|
|
13 |
SCHEDULER_LIST,
|
14 |
get_scheduler_list,
|
15 |
)
|
16 |
-
from PIL import Image
|
17 |
|
18 |
# https://github.com/mikonvergence/ControlNetInpaint
|
19 |
|
@@ -27,11 +29,13 @@ class StableDiffusionControlNetInpaintMlsdGenerator:
|
|
27 |
controlnet = ControlNetModel.from_pretrained(
|
28 |
controlnet_model_path, torch_dtype=torch.float16
|
29 |
)
|
30 |
-
self.pipe =
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
35 |
)
|
36 |
|
37 |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
@@ -39,13 +43,12 @@ class StableDiffusionControlNetInpaintMlsdGenerator:
|
|
39 |
self.pipe.enable_xformers_memory_efficient_attention()
|
40 |
|
41 |
return self.pipe
|
42 |
-
|
43 |
def load_image(self, image_path):
|
44 |
image = np.array(image_path)
|
45 |
image = Image.fromarray(image)
|
46 |
return image
|
47 |
|
48 |
-
|
49 |
def controlnet_inpaint_mlsd(self, image_path: str):
|
50 |
mlsd = MLSDdetector.from_pretrained("lllyasviel/ControlNet")
|
51 |
image = image_path["image"].convert("RGB").resize((512, 512))
|
@@ -71,10 +74,10 @@ class StableDiffusionControlNetInpaintMlsdGenerator:
|
|
71 |
|
72 |
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
73 |
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
74 |
-
|
75 |
normal_image = self.load_image(image_path=normal_image)
|
76 |
mask_image = self.load_image(image_path=mask_image)
|
77 |
-
|
78 |
control_image = self.controlnet_inpaint_mlsd(image_path=image_path)
|
79 |
|
80 |
pipe = self.load_model(
|
|
|
3 |
import torch
|
4 |
from controlnet_aux import MLSDdetector
|
5 |
from diffusers import ControlNetModel
|
6 |
+
from PIL import Image
|
7 |
|
8 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import (
|
9 |
+
StableDiffusionControlNetInpaintPipeline,
|
10 |
+
)
|
11 |
from diffusion_webui.utils.model_list import (
|
12 |
controlnet_mlsd_model_list,
|
13 |
stable_inpiant_model_list,
|
|
|
16 |
SCHEDULER_LIST,
|
17 |
get_scheduler_list,
|
18 |
)
|
|
|
19 |
|
20 |
# https://github.com/mikonvergence/ControlNetInpaint
|
21 |
|
|
|
29 |
controlnet = ControlNetModel.from_pretrained(
|
30 |
controlnet_model_path, torch_dtype=torch.float16
|
31 |
)
|
32 |
+
self.pipe = (
|
33 |
+
StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
34 |
+
pretrained_model_name_or_path=stable_model_path,
|
35 |
+
controlnet=controlnet,
|
36 |
+
safety_checker=None,
|
37 |
+
torch_dtype=torch.float16,
|
38 |
+
)
|
39 |
)
|
40 |
|
41 |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
|
|
43 |
self.pipe.enable_xformers_memory_efficient_attention()
|
44 |
|
45 |
return self.pipe
|
46 |
+
|
47 |
def load_image(self, image_path):
|
48 |
image = np.array(image_path)
|
49 |
image = Image.fromarray(image)
|
50 |
return image
|
51 |
|
|
|
52 |
def controlnet_inpaint_mlsd(self, image_path: str):
|
53 |
mlsd = MLSDdetector.from_pretrained("lllyasviel/ControlNet")
|
54 |
image = image_path["image"].convert("RGB").resize((512, 512))
|
|
|
74 |
|
75 |
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
76 |
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
77 |
+
|
78 |
normal_image = self.load_image(image_path=normal_image)
|
79 |
mask_image = self.load_image(image_path=mask_image)
|
80 |
+
|
81 |
control_image = self.controlnet_inpaint_mlsd(image_path=image_path)
|
82 |
|
83 |
pipe = self.load_model(
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_pose.py
CHANGED
@@ -3,9 +3,11 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from controlnet_aux import OpenposeDetector
|
5 |
from diffusers import ControlNetModel
|
6 |
-
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
|
7 |
from PIL import Image
|
8 |
|
|
|
|
|
|
|
9 |
from diffusion_webui.utils.model_list import (
|
10 |
controlnet_pose_model_list,
|
11 |
stable_inpiant_model_list,
|
@@ -28,11 +30,13 @@ class StableDiffusionControlNetInpaintPoseGenerator:
|
|
28 |
controlnet_model_path, torch_dtype=torch.float16
|
29 |
)
|
30 |
|
31 |
-
self.pipe =
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
36 |
)
|
37 |
|
38 |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
@@ -40,12 +44,12 @@ class StableDiffusionControlNetInpaintPoseGenerator:
|
|
40 |
self.pipe.enable_xformers_memory_efficient_attention()
|
41 |
|
42 |
return self.pipe
|
43 |
-
|
44 |
def load_image(self, image_path):
|
45 |
image = np.array(image_path)
|
46 |
image = Image.fromarray(image)
|
47 |
return image
|
48 |
-
|
49 |
def controlnet_pose_inpaint(self, image_path: str):
|
50 |
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
51 |
|
@@ -71,10 +75,10 @@ class StableDiffusionControlNetInpaintPoseGenerator:
|
|
71 |
):
|
72 |
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
73 |
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
74 |
-
|
75 |
normal_image = self.load_image(image_path=normal_image)
|
76 |
mask_image = self.load_image(image_path=mask_image)
|
77 |
-
|
78 |
controlnet_image = self.controlnet_pose_inpaint(image_path=image_path)
|
79 |
|
80 |
pipe = self.load_model(
|
|
|
3 |
import torch
|
4 |
from controlnet_aux import OpenposeDetector
|
5 |
from diffusers import ControlNetModel
|
|
|
6 |
from PIL import Image
|
7 |
|
8 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import (
|
9 |
+
StableDiffusionControlNetInpaintPipeline,
|
10 |
+
)
|
11 |
from diffusion_webui.utils.model_list import (
|
12 |
controlnet_pose_model_list,
|
13 |
stable_inpiant_model_list,
|
|
|
30 |
controlnet_model_path, torch_dtype=torch.float16
|
31 |
)
|
32 |
|
33 |
+
self.pipe = (
|
34 |
+
StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
35 |
+
pretrained_model_name_or_path=stable_model_path,
|
36 |
+
controlnet=controlnet,
|
37 |
+
safety_checker=None,
|
38 |
+
torch_dtype=torch.float16,
|
39 |
+
)
|
40 |
)
|
41 |
|
42 |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
|
|
44 |
self.pipe.enable_xformers_memory_efficient_attention()
|
45 |
|
46 |
return self.pipe
|
47 |
+
|
48 |
def load_image(self, image_path):
|
49 |
image = np.array(image_path)
|
50 |
image = Image.fromarray(image)
|
51 |
return image
|
52 |
+
|
53 |
def controlnet_pose_inpaint(self, image_path: str):
|
54 |
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
55 |
|
|
|
75 |
):
|
76 |
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
77 |
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
78 |
+
|
79 |
normal_image = self.load_image(image_path=normal_image)
|
80 |
mask_image = self.load_image(image_path=mask_image)
|
81 |
+
|
82 |
controlnet_image = self.controlnet_pose_inpaint(image_path=image_path)
|
83 |
|
84 |
pipe = self.load_model(
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_scribble.py
CHANGED
@@ -3,9 +3,11 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from controlnet_aux import HEDdetector
|
5 |
from diffusers import ControlNetModel
|
6 |
-
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
|
7 |
from PIL import Image
|
8 |
|
|
|
|
|
|
|
9 |
from diffusion_webui.utils.model_list import (
|
10 |
controlnet_scribble_model_list,
|
11 |
stable_inpiant_model_list,
|
@@ -17,6 +19,7 @@ from diffusion_webui.utils.scheduler_list import (
|
|
17 |
|
18 |
# https://github.com/mikonvergence/ControlNetInpaint
|
19 |
|
|
|
20 |
class StableDiffusionControlNetInpaintScribbleGenerator:
|
21 |
def __init__(self):
|
22 |
self.pipe = None
|
@@ -27,11 +30,13 @@ class StableDiffusionControlNetInpaintScribbleGenerator:
|
|
27 |
controlnet_model_path, torch_dtype=torch.float16
|
28 |
)
|
29 |
|
30 |
-
self.pipe =
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
35 |
)
|
36 |
|
37 |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
@@ -39,7 +44,7 @@ class StableDiffusionControlNetInpaintScribbleGenerator:
|
|
39 |
self.pipe.enable_xformers_memory_efficient_attention()
|
40 |
|
41 |
return self.pipe
|
42 |
-
|
43 |
def load_image(self, image_path):
|
44 |
image = np.array(image_path)
|
45 |
image = Image.fromarray(image)
|
@@ -70,11 +75,13 @@ class StableDiffusionControlNetInpaintScribbleGenerator:
|
|
70 |
):
|
71 |
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
72 |
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
73 |
-
|
74 |
normal_image = self.load_image(image_path=normal_image)
|
75 |
mask_image = self.load_image(image_path=mask_image)
|
76 |
-
|
77 |
-
controlnet_image = self.controlnet_inpaint_scribble(
|
|
|
|
|
78 |
|
79 |
pipe = self.load_model(
|
80 |
stable_model_path=stable_model_path,
|
|
|
3 |
import torch
|
4 |
from controlnet_aux import HEDdetector
|
5 |
from diffusers import ControlNetModel
|
|
|
6 |
from PIL import Image
|
7 |
|
8 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.pipeline_stable_diffusion_controlnet_inpaint import (
|
9 |
+
StableDiffusionControlNetInpaintPipeline,
|
10 |
+
)
|
11 |
from diffusion_webui.utils.model_list import (
|
12 |
controlnet_scribble_model_list,
|
13 |
stable_inpiant_model_list,
|
|
|
19 |
|
20 |
# https://github.com/mikonvergence/ControlNetInpaint
|
21 |
|
22 |
+
|
23 |
class StableDiffusionControlNetInpaintScribbleGenerator:
|
24 |
def __init__(self):
|
25 |
self.pipe = None
|
|
|
30 |
controlnet_model_path, torch_dtype=torch.float16
|
31 |
)
|
32 |
|
33 |
+
self.pipe = (
|
34 |
+
StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
35 |
+
pretrained_model_name_or_path=stable_model_path,
|
36 |
+
controlnet=controlnet,
|
37 |
+
safety_checker=None,
|
38 |
+
torch_dtype=torch.float16,
|
39 |
+
)
|
40 |
)
|
41 |
|
42 |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
|
|
44 |
self.pipe.enable_xformers_memory_efficient_attention()
|
45 |
|
46 |
return self.pipe
|
47 |
+
|
48 |
def load_image(self, image_path):
|
49 |
image = np.array(image_path)
|
50 |
image = Image.fromarray(image)
|
|
|
75 |
):
|
76 |
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
77 |
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
78 |
+
|
79 |
normal_image = self.load_image(image_path=normal_image)
|
80 |
mask_image = self.load_image(image_path=mask_image)
|
81 |
+
|
82 |
+
controlnet_image = self.controlnet_inpaint_scribble(
|
83 |
+
image_path=image_path
|
84 |
+
)
|
85 |
|
86 |
pipe = self.load_model(
|
87 |
stable_model_path=stable_model_path,
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/controlnet_inpaint_seg.py
CHANGED
@@ -200,11 +200,12 @@ class StableDiffusionControlNetInpaintSegGenerator:
|
|
200 |
self.pipe.enable_xformers_memory_efficient_attention()
|
201 |
|
202 |
return self.pipe
|
203 |
-
|
204 |
def load_image(self, image_path):
|
205 |
image = np.array(image_path)
|
206 |
image = Image.fromarray(image)
|
207 |
return image
|
|
|
208 |
def controlnet_seg_inpaint(self, image_path: str):
|
209 |
image_processor = AutoImageProcessor.from_pretrained(
|
210 |
"openmmlab/upernet-convnext-small"
|
@@ -252,10 +253,10 @@ class StableDiffusionControlNetInpaintSegGenerator:
|
|
252 |
|
253 |
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
254 |
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
255 |
-
|
256 |
normal_image = self.load_image(image_path=normal_image)
|
257 |
mask_image = self.load_image(image_path=mask_image)
|
258 |
-
|
259 |
controlnet_image = self.controlnet_seg_inpaint(image_path=image_path)
|
260 |
|
261 |
pipe = self.load_model(
|
|
|
200 |
self.pipe.enable_xformers_memory_efficient_attention()
|
201 |
|
202 |
return self.pipe
|
203 |
+
|
204 |
def load_image(self, image_path):
|
205 |
image = np.array(image_path)
|
206 |
image = Image.fromarray(image)
|
207 |
return image
|
208 |
+
|
209 |
def controlnet_seg_inpaint(self, image_path: str):
|
210 |
image_processor = AutoImageProcessor.from_pretrained(
|
211 |
"openmmlab/upernet-convnext-small"
|
|
|
253 |
|
254 |
normal_image = image_path["image"].convert("RGB").resize((512, 512))
|
255 |
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
|
256 |
+
|
257 |
normal_image = self.load_image(image_path=normal_image)
|
258 |
mask_image = self.load_image(image_path=mask_image)
|
259 |
+
|
260 |
controlnet_image = self.controlnet_seg_inpaint(image_path=image_path)
|
261 |
|
262 |
pipe = self.load_model(
|
diffusion_webui/helpers.py
CHANGED
@@ -49,3 +49,6 @@ from diffusion_webui.diffusion_models.stable_diffusion.inpaint_app import (
|
|
49 |
from diffusion_webui.diffusion_models.stable_diffusion.text2img_app import (
|
50 |
StableDiffusionText2ImageGenerator,
|
51 |
)
|
|
|
|
|
|
|
|
49 |
from diffusion_webui.diffusion_models.stable_diffusion.text2img_app import (
|
50 |
StableDiffusionText2ImageGenerator,
|
51 |
)
|
52 |
+
from diffusion_webui.upscaler_models.codeformer_upscaler import (
|
53 |
+
CodeformerUpscalerGenerator,
|
54 |
+
)
|
diffusion_webui/upscaler_models/codeformer_upscaler.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from codeformer.app import inference_app
|
3 |
+
|
4 |
+
|
5 |
+
class CodeformerUpscalerGenerator:
|
6 |
+
def __init__(self):
|
7 |
+
self.pipe = None
|
8 |
+
|
9 |
+
def generate_image(
|
10 |
+
self,
|
11 |
+
image_path: str,
|
12 |
+
background_enhance: bool,
|
13 |
+
face_upsample: bool,
|
14 |
+
upscale: int,
|
15 |
+
codeformer_fidelity: int,
|
16 |
+
):
|
17 |
+
if self.pipe is None:
|
18 |
+
self.pipe = inference_app(
|
19 |
+
image=image_path,
|
20 |
+
background_enhance=background_enhance,
|
21 |
+
face_upsample=face_upsample,
|
22 |
+
upscale=upscale,
|
23 |
+
codeformer_fidelity=codeformer_fidelity,
|
24 |
+
)
|
25 |
+
|
26 |
+
return [self.pipe]
|
27 |
+
|
28 |
+
def app():
|
29 |
+
with gr.Blocks():
|
30 |
+
with gr.Row():
|
31 |
+
with gr.Column():
|
32 |
+
codeformer_upscale_image_file = gr.Image(
|
33 |
+
type="filepath", label="Image"
|
34 |
+
).style(height=260)
|
35 |
+
|
36 |
+
with gr.Row():
|
37 |
+
with gr.Column():
|
38 |
+
codeformer_face_upsample = gr.Checkbox(
|
39 |
+
label="Face Upsample",
|
40 |
+
value=True,
|
41 |
+
)
|
42 |
+
codeformer_upscale = gr.Slider(
|
43 |
+
label="Upscale",
|
44 |
+
minimum=1,
|
45 |
+
maximum=4,
|
46 |
+
step=1,
|
47 |
+
value=2,
|
48 |
+
)
|
49 |
+
with gr.Row():
|
50 |
+
with gr.Column():
|
51 |
+
codeformer_background_enhance = gr.Checkbox(
|
52 |
+
label="Background Enhance",
|
53 |
+
value=True,
|
54 |
+
)
|
55 |
+
codeformer_upscale_fidelity = gr.Slider(
|
56 |
+
label="Codeformer Fidelity",
|
57 |
+
minimum=0.1,
|
58 |
+
maximum=1.0,
|
59 |
+
step=0.1,
|
60 |
+
value=0.5,
|
61 |
+
)
|
62 |
+
|
63 |
+
codeformer_upscale_predict_button = gr.Button(
|
64 |
+
value="Generator"
|
65 |
+
)
|
66 |
+
|
67 |
+
with gr.Column():
|
68 |
+
output_image = gr.Gallery(
|
69 |
+
label="Generated images",
|
70 |
+
show_label=False,
|
71 |
+
elem_id="gallery",
|
72 |
+
).style(grid=(1, 2))
|
73 |
+
|
74 |
+
codeformer_upscale_predict_button.click(
|
75 |
+
fn=CodeformerUpscalerGenerator().generate_image,
|
76 |
+
inputs=[
|
77 |
+
codeformer_upscale_image_file,
|
78 |
+
codeformer_background_enhance,
|
79 |
+
codeformer_face_upsample,
|
80 |
+
codeformer_upscale,
|
81 |
+
codeformer_upscale_fidelity,
|
82 |
+
],
|
83 |
+
outputs=[output_image],
|
84 |
+
)
|
diffusion_webui/utils/model_list.py
CHANGED
@@ -29,8 +29,8 @@ controlnet_scribble_model_list = [
|
|
29 |
"thibaud/controlnet-sd21-scribble-diffusers",
|
30 |
]
|
31 |
stable_inpiant_model_list = [
|
32 |
-
"runwayml/stable-diffusion-inpainting",
|
33 |
"stabilityai/stable-diffusion-2-inpainting",
|
|
|
34 |
]
|
35 |
|
36 |
controlnet_mlsd_model_list = [
|
|
|
29 |
"thibaud/controlnet-sd21-scribble-diffusers",
|
30 |
]
|
31 |
stable_inpiant_model_list = [
|
|
|
32 |
"stabilityai/stable-diffusion-2-inpainting",
|
33 |
+
"runwayml/stable-diffusion-inpainting",
|
34 |
]
|
35 |
|
36 |
controlnet_mlsd_model_list = [
|