Spaces:
Runtime error
Runtime error
File size: 14,290 Bytes
2a37fe9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import json
import math
import random
import time
from pathlib import Path
from uuid import uuid4
import torch
from diffusers import __version__ as diffusers_version
from huggingface_hub import CommitOperationAdd, create_commit, create_repo
from .upsampling import RealESRGANModel
from .utils import pad_along_axis
def get_all_files(root: Path):
dirs = [root]
while len(dirs) > 0:
dir = dirs.pop()
for candidate in dir.iterdir():
if candidate.is_file():
yield candidate
if candidate.is_dir():
dirs.append(candidate)
def get_groups_of_n(n: int, iterator):
assert n > 1
buffer = []
for elt in iterator:
if len(buffer) == n:
yield buffer
buffer = []
buffer.append(elt)
if len(buffer) != 0:
yield buffer
def upload_folder_chunked(
repo_id: str,
upload_dir: Path,
n: int = 100,
private: bool = False,
create_pr: bool = False,
):
"""Upload a folder to the Hugging Face Hub in chunks of n files at a time.
Args:
repo_id (str): The repo id to upload to.
upload_dir (Path): The directory to upload.
n (int, *optional*, defaults to 100): The number of files to upload at a time.
private (bool, *optional*): Whether to upload the repo as private.
create_pr (bool, *optional*): Whether to create a PR after uploading instead of commiting directly.
"""
url = create_repo(repo_id, exist_ok=True, private=private, repo_type="dataset")
print(f"Uploading files to: {url}")
root = Path(upload_dir)
if not root.exists():
raise ValueError(f"Upload directory {root} does not exist.")
for i, file_paths in enumerate(get_groups_of_n(n, get_all_files(root))):
print(f"Committing {file_paths}")
operations = [
CommitOperationAdd(
path_in_repo=f"{file_path.parent.name}/{file_path.name}",
path_or_fileobj=str(file_path),
)
for file_path in file_paths
]
create_commit(
repo_id=repo_id,
operations=operations,
commit_message=f"Upload part {i}",
repo_type="dataset",
create_pr=create_pr,
)
def generate_input_batches(pipeline, prompts, seeds, batch_size, height, width):
if len(prompts) != len(seeds):
raise ValueError("Number of prompts and seeds must be equal.")
embeds_batch, noise_batch = None, None
batch_idx = 0
for i, (prompt, seed) in enumerate(zip(prompts, seeds)):
embeds = pipeline.embed_text(prompt)
noise = torch.randn(
(1, pipeline.unet.in_channels, height // 8, width // 8),
device=pipeline.device,
generator=torch.Generator(device="cpu" if pipeline.device.type == "mps" else pipeline.device).manual_seed(
seed
),
)
embeds_batch = embeds if embeds_batch is None else torch.cat([embeds_batch, embeds])
noise_batch = noise if noise_batch is None else torch.cat([noise_batch, noise])
batch_is_ready = embeds_batch.shape[0] == batch_size or i + 1 == len(prompts)
if not batch_is_ready:
continue
yield batch_idx, embeds_batch.type(torch.cuda.HalfTensor), noise_batch.type(torch.cuda.HalfTensor)
batch_idx += 1
del embeds_batch, noise_batch
torch.cuda.empty_cache()
embeds_batch, noise_batch = None, None
def generate_images(
pipeline,
prompt,
batch_size=1,
num_batches=1,
seeds=None,
num_inference_steps=50,
guidance_scale=7.5,
output_dir="./images",
image_file_ext=".jpg",
upsample=False,
height=512,
width=512,
eta=0.0,
push_to_hub=False,
repo_id=None,
private=False,
create_pr=False,
name=None,
):
"""Generate images using the StableDiffusion pipeline.
Args:
pipeline (StableDiffusionWalkPipeline): The StableDiffusion pipeline instance.
prompt (str): The prompt to use for the image generation.
batch_size (int, *optional*, defaults to 1): The batch size to use for image generation.
num_batches (int, *optional*, defaults to 1): The number of batches to generate.
seeds (list[int], *optional*): The seeds to use for the image generation.
num_inference_steps (int, *optional*, defaults to 50): The number of inference steps to take.
guidance_scale (float, *optional*, defaults to 7.5): The guidance scale to use for image generation.
output_dir (str, *optional*, defaults to "./images"): The output directory to save the images to.
image_file_ext (str, *optional*, defaults to '.jpg'): The image file extension to use.
upsample (bool, *optional*, defaults to False): Whether to upsample the images.
height (int, *optional*, defaults to 512): The height of the images to generate.
width (int, *optional*, defaults to 512): The width of the images to generate.
eta (float, *optional*, defaults to 0.0): The eta parameter to use for image generation.
push_to_hub (bool, *optional*, defaults to False): Whether to push the generated images to the Hugging Face Hub.
repo_id (str, *optional*): The repo id to push the images to.
private (bool, *optional*): Whether to push the repo as private.
create_pr (bool, *optional*): Whether to create a PR after pushing instead of commiting directly.
name (str, *optional*, defaults to current timestamp str): The name of the sub-directory of
output_dir to save the images to.
"""
if push_to_hub:
if repo_id is None:
raise ValueError("Must provide repo_id if push_to_hub is True.")
name = name or time.strftime("%Y%m%d-%H%M%S")
save_path = Path(output_dir) / name
save_path.mkdir(exist_ok=False, parents=True)
prompt_config_path = save_path / "prompt_config.json"
num_images = batch_size * num_batches
seeds = seeds or [random.choice(list(range(0, 9999999))) for _ in range(num_images)]
if len(seeds) != num_images:
raise ValueError("Number of seeds must be equal to batch_size * num_batches.")
if upsample:
if getattr(pipeline, "upsampler", None) is None:
pipeline.upsampler = RealESRGANModel.from_pretrained("nateraw/real-esrgan")
pipeline.upsampler.to(pipeline.device)
cfg = dict(
prompt=prompt,
guidance_scale=guidance_scale,
eta=eta,
num_inference_steps=num_inference_steps,
upsample=upsample,
height=height,
width=width,
scheduler=dict(pipeline.scheduler.config),
tiled=pipeline.tiled,
diffusers_version=diffusers_version,
device_name=torch.cuda.get_device_name(0) if torch.cuda.is_available() else "unknown",
)
prompt_config_path.write_text(json.dumps(cfg, indent=2, sort_keys=False))
frame_index = 0
frame_filepaths = []
for batch_idx, embeds, noise in generate_input_batches(
pipeline, [prompt] * num_images, seeds, batch_size, height, width
):
print(f"Generating batch {batch_idx}")
outputs = pipeline(
text_embeddings=embeds,
latents=noise,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
eta=eta,
height=height,
width=width,
output_type="pil" if not upsample else "numpy",
)["images"]
if upsample:
images = []
for output in outputs:
images.append(pipeline.upsampler(output))
else:
images = outputs
for image in images:
frame_filepath = save_path / f"{seeds[frame_index]}{image_file_ext}"
image.save(frame_filepath)
frame_filepaths.append(str(frame_filepath))
frame_index += 1
return frame_filepaths
if push_to_hub:
upload_folder_chunked(repo_id, save_path, private=private, create_pr=create_pr)
def generate_images_flax(
pipeline,
params,
prompt,
batch_size=1,
num_batches=1,
seeds=None,
num_inference_steps=50,
guidance_scale=7.5,
output_dir="./images",
image_file_ext=".jpg",
upsample=False,
height=512,
width=512,
push_to_hub=False,
repo_id=None,
private=False,
create_pr=False,
name=None,
):
import jax
from flax.training.common_utils import shard
"""Generate images using the StableDiffusion pipeline.
Args:
pipeline (StableDiffusionWalkPipeline): The StableDiffusion pipeline instance.
params (`Union[Dict, FrozenDict]`): The model parameters.
prompt (str): The prompt to use for the image generation.
batch_size (int, *optional*, defaults to 1): The batch size to use for image generation.
num_batches (int, *optional*, defaults to 1): The number of batches to generate.
seeds (int, *optional*): The seed to use for the image generation.
num_inference_steps (int, *optional*, defaults to 50): The number of inference steps to take.
guidance_scale (float, *optional*, defaults to 7.5): The guidance scale to use for image generation.
output_dir (str, *optional*, defaults to "./images"): The output directory to save the images to.
image_file_ext (str, *optional*, defaults to '.jpg'): The image file extension to use.
upsample (bool, *optional*, defaults to False): Whether to upsample the images.
height (int, *optional*, defaults to 512): The height of the images to generate.
width (int, *optional*, defaults to 512): The width of the images to generate.
push_to_hub (bool, *optional*, defaults to False): Whether to push the generated images to the Hugging Face Hub.
repo_id (str, *optional*): The repo id to push the images to.
private (bool, *optional*): Whether to push the repo as private.
create_pr (bool, *optional*): Whether to create a PR after pushing instead of commiting directly.
name (str, *optional*, defaults to current timestamp str): The name of the sub-directory of
output_dir to save the images to.
"""
if push_to_hub:
if repo_id is None:
raise ValueError("Must provide repo_id if push_to_hub is True.")
name = name or time.strftime("%Y%m%d-%H%M%S")
save_path = Path(output_dir) / name
save_path.mkdir(exist_ok=False, parents=True)
prompt_config_path = save_path / "prompt_config.json"
num_images = batch_size * num_batches
seeds = seeds or random.choice(list(range(0, 9999999)))
prng_seed = jax.random.PRNGKey(seeds)
if upsample:
if getattr(pipeline, "upsampler", None) is None:
pipeline.upsampler = RealESRGANModel.from_pretrained("nateraw/real-esrgan")
if not torch.cuda.is_available():
print("Upsampling is recommended to be done on a GPU, as it is very slow on CPU")
else:
pipeline.upsampler = pipeline.upsampler.cuda()
cfg = dict(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
upsample=upsample,
height=height,
width=width,
scheduler=dict(pipeline.scheduler.config),
# tiled=pipeline.tiled,
diffusers_version=diffusers_version,
device_name=torch.cuda.get_device_name(0) if torch.cuda.is_available() else "unknown",
)
prompt_config_path.write_text(json.dumps(cfg, indent=2, sort_keys=False))
NUM_TPU_CORES = jax.device_count()
jit = True # force jit, assume params are already sharded
batch_size_total = NUM_TPU_CORES * batch_size if jit else batch_size
def generate_input_batches(prompts, batch_size):
prompt_batch = None
for batch_idx in range(math.ceil(len(prompts) / batch_size)):
prompt_batch = prompts[batch_idx * batch_size : (batch_idx + 1) * batch_size]
yield batch_idx, prompt_batch
frame_index = 0
frame_filepaths = []
for batch_idx, prompt_batch in generate_input_batches([prompt] * num_images, batch_size_total):
# This batch size correspond to each TPU core, so we are generating batch_size * NUM_TPU_CORES images
print(f"Generating batches: {batch_idx*NUM_TPU_CORES} - {min((batch_idx+1)*NUM_TPU_CORES, num_batches)}")
prompt_ids_batch = pipeline.prepare_inputs(prompt_batch)
prng_seed_batch = prng_seed
if jit:
padded = False
# Check if len of prompt_batch is multiple of NUM_TPU_CORES, if not pad its ids
if len(prompt_batch) % NUM_TPU_CORES != 0:
padded = True
pad_size = NUM_TPU_CORES - (len(prompt_batch) % NUM_TPU_CORES)
# Pad embeds_batch and noise_batch with zeros in batch dimension
prompt_ids_batch = pad_along_axis(prompt_ids_batch, pad_size, axis=0)
prompt_ids_batch = shard(prompt_ids_batch)
prng_seed_batch = jax.random.split(prng_seed, jax.device_count())
outputs = pipeline(
params,
prng_seed=prng_seed_batch,
prompt_ids=prompt_ids_batch,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
output_type="pil" if not upsample else "numpy",
jit=jit,
)["images"]
if jit:
# check if we padded and remove that padding from outputs
if padded:
outputs = outputs[:-pad_size]
if upsample:
images = []
for output in outputs:
images.append(pipeline.upsampler(output))
else:
images = outputs
for image in images:
uuid = str(uuid4())
frame_filepath = save_path / f"{uuid}{image_file_ext}"
image.save(frame_filepath)
frame_filepaths.append(str(frame_filepath))
frame_index += 1
return frame_filepaths
if push_to_hub:
upload_folder_chunked(repo_id, save_path, private=private, create_pr=create_pr)
|