File size: 14,290 Bytes
2a37fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import json
import math
import random
import time
from pathlib import Path
from uuid import uuid4

import torch
from diffusers import __version__ as diffusers_version
from huggingface_hub import CommitOperationAdd, create_commit, create_repo

from .upsampling import RealESRGANModel
from .utils import pad_along_axis


def get_all_files(root: Path):
    dirs = [root]
    while len(dirs) > 0:
        dir = dirs.pop()
        for candidate in dir.iterdir():
            if candidate.is_file():
                yield candidate
            if candidate.is_dir():
                dirs.append(candidate)


def get_groups_of_n(n: int, iterator):
    assert n > 1
    buffer = []
    for elt in iterator:
        if len(buffer) == n:
            yield buffer
            buffer = []
        buffer.append(elt)
    if len(buffer) != 0:
        yield buffer


def upload_folder_chunked(
    repo_id: str,
    upload_dir: Path,
    n: int = 100,
    private: bool = False,
    create_pr: bool = False,
):
    """Upload a folder to the Hugging Face Hub in chunks of n files at a time.
    Args:
        repo_id (str): The repo id to upload to.
        upload_dir (Path): The directory to upload.
        n (int, *optional*, defaults to 100): The number of files to upload at a time.
        private (bool, *optional*): Whether to upload the repo as private.
        create_pr (bool, *optional*): Whether to create a PR after uploading instead of commiting directly.
    """

    url = create_repo(repo_id, exist_ok=True, private=private, repo_type="dataset")
    print(f"Uploading files to: {url}")

    root = Path(upload_dir)
    if not root.exists():
        raise ValueError(f"Upload directory {root} does not exist.")

    for i, file_paths in enumerate(get_groups_of_n(n, get_all_files(root))):
        print(f"Committing {file_paths}")
        operations = [
            CommitOperationAdd(
                path_in_repo=f"{file_path.parent.name}/{file_path.name}",
                path_or_fileobj=str(file_path),
            )
            for file_path in file_paths
        ]
        create_commit(
            repo_id=repo_id,
            operations=operations,
            commit_message=f"Upload part {i}",
            repo_type="dataset",
            create_pr=create_pr,
        )


def generate_input_batches(pipeline, prompts, seeds, batch_size, height, width):
    if len(prompts) != len(seeds):
        raise ValueError("Number of prompts and seeds must be equal.")

    embeds_batch, noise_batch = None, None
    batch_idx = 0
    for i, (prompt, seed) in enumerate(zip(prompts, seeds)):
        embeds = pipeline.embed_text(prompt)
        noise = torch.randn(
            (1, pipeline.unet.in_channels, height // 8, width // 8),
            device=pipeline.device,
            generator=torch.Generator(device="cpu" if pipeline.device.type == "mps" else pipeline.device).manual_seed(
                seed
            ),
        )
        embeds_batch = embeds if embeds_batch is None else torch.cat([embeds_batch, embeds])
        noise_batch = noise if noise_batch is None else torch.cat([noise_batch, noise])
        batch_is_ready = embeds_batch.shape[0] == batch_size or i + 1 == len(prompts)
        if not batch_is_ready:
            continue
        yield batch_idx, embeds_batch.type(torch.cuda.HalfTensor), noise_batch.type(torch.cuda.HalfTensor)
        batch_idx += 1
        del embeds_batch, noise_batch
        torch.cuda.empty_cache()
        embeds_batch, noise_batch = None, None


def generate_images(
    pipeline,
    prompt,
    batch_size=1,
    num_batches=1,
    seeds=None,
    num_inference_steps=50,
    guidance_scale=7.5,
    output_dir="./images",
    image_file_ext=".jpg",
    upsample=False,
    height=512,
    width=512,
    eta=0.0,
    push_to_hub=False,
    repo_id=None,
    private=False,
    create_pr=False,
    name=None,
):
    """Generate images using the StableDiffusion pipeline.
    Args:
        pipeline (StableDiffusionWalkPipeline): The StableDiffusion pipeline instance.
        prompt (str): The prompt to use for the image generation.
        batch_size (int, *optional*, defaults to 1): The batch size to use for image generation.
        num_batches (int, *optional*, defaults to 1): The number of batches to generate.
        seeds (list[int], *optional*): The seeds to use for the image generation.
        num_inference_steps (int, *optional*, defaults to 50): The number of inference steps to take.
        guidance_scale (float, *optional*, defaults to 7.5): The guidance scale to use for image generation.
        output_dir (str, *optional*, defaults to "./images"): The output directory to save the images to.
        image_file_ext (str, *optional*, defaults to '.jpg'): The image file extension to use.
        upsample (bool, *optional*, defaults to False): Whether to upsample the images.
        height (int, *optional*, defaults to 512): The height of the images to generate.
        width (int, *optional*, defaults to 512): The width of the images to generate.
        eta (float, *optional*, defaults to 0.0): The eta parameter to use for image generation.
        push_to_hub (bool, *optional*, defaults to False): Whether to push the generated images to the Hugging Face Hub.
        repo_id (str, *optional*): The repo id to push the images to.
        private (bool, *optional*): Whether to push the repo as private.
        create_pr (bool, *optional*): Whether to create a PR after pushing instead of commiting directly.
        name (str, *optional*, defaults to current timestamp str): The name of the sub-directory of
            output_dir to save the images to.
    """
    if push_to_hub:
        if repo_id is None:
            raise ValueError("Must provide repo_id if push_to_hub is True.")

    name = name or time.strftime("%Y%m%d-%H%M%S")
    save_path = Path(output_dir) / name
    save_path.mkdir(exist_ok=False, parents=True)
    prompt_config_path = save_path / "prompt_config.json"

    num_images = batch_size * num_batches
    seeds = seeds or [random.choice(list(range(0, 9999999))) for _ in range(num_images)]
    if len(seeds) != num_images:
        raise ValueError("Number of seeds must be equal to batch_size * num_batches.")

    if upsample:
        if getattr(pipeline, "upsampler", None) is None:
            pipeline.upsampler = RealESRGANModel.from_pretrained("nateraw/real-esrgan")
        pipeline.upsampler.to(pipeline.device)

    cfg = dict(
        prompt=prompt,
        guidance_scale=guidance_scale,
        eta=eta,
        num_inference_steps=num_inference_steps,
        upsample=upsample,
        height=height,
        width=width,
        scheduler=dict(pipeline.scheduler.config),
        tiled=pipeline.tiled,
        diffusers_version=diffusers_version,
        device_name=torch.cuda.get_device_name(0) if torch.cuda.is_available() else "unknown",
    )
    prompt_config_path.write_text(json.dumps(cfg, indent=2, sort_keys=False))

    frame_index = 0
    frame_filepaths = []
    for batch_idx, embeds, noise in generate_input_batches(
        pipeline, [prompt] * num_images, seeds, batch_size, height, width
    ):
        print(f"Generating batch {batch_idx}")

        outputs = pipeline(
            text_embeddings=embeds,
            latents=noise,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            eta=eta,
            height=height,
            width=width,
            output_type="pil" if not upsample else "numpy",
        )["images"]
        if upsample:
            images = []
            for output in outputs:
                images.append(pipeline.upsampler(output))
        else:
            images = outputs

        for image in images:
            frame_filepath = save_path / f"{seeds[frame_index]}{image_file_ext}"
            image.save(frame_filepath)
            frame_filepaths.append(str(frame_filepath))
            frame_index += 1

    return frame_filepaths

    if push_to_hub:
        upload_folder_chunked(repo_id, save_path, private=private, create_pr=create_pr)


def generate_images_flax(
    pipeline,
    params,
    prompt,
    batch_size=1,
    num_batches=1,
    seeds=None,
    num_inference_steps=50,
    guidance_scale=7.5,
    output_dir="./images",
    image_file_ext=".jpg",
    upsample=False,
    height=512,
    width=512,
    push_to_hub=False,
    repo_id=None,
    private=False,
    create_pr=False,
    name=None,
):
    import jax
    from flax.training.common_utils import shard

    """Generate images using the StableDiffusion pipeline.
    Args:
        pipeline (StableDiffusionWalkPipeline): The StableDiffusion pipeline instance.
        params (`Union[Dict, FrozenDict]`): The model parameters.
        prompt (str): The prompt to use for the image generation.
        batch_size (int, *optional*, defaults to 1): The batch size to use for image generation.
        num_batches (int, *optional*, defaults to 1): The number of batches to generate.
        seeds (int, *optional*): The seed to use for the image generation.
        num_inference_steps (int, *optional*, defaults to 50): The number of inference steps to take.
        guidance_scale (float, *optional*, defaults to 7.5): The guidance scale to use for image generation.
        output_dir (str, *optional*, defaults to "./images"): The output directory to save the images to.
        image_file_ext (str, *optional*, defaults to '.jpg'): The image file extension to use.
        upsample (bool, *optional*, defaults to False): Whether to upsample the images.
        height (int, *optional*, defaults to 512): The height of the images to generate.
        width (int, *optional*, defaults to 512): The width of the images to generate.
        push_to_hub (bool, *optional*, defaults to False): Whether to push the generated images to the Hugging Face Hub.
        repo_id (str, *optional*): The repo id to push the images to.
        private (bool, *optional*): Whether to push the repo as private.
        create_pr (bool, *optional*): Whether to create a PR after pushing instead of commiting directly.
        name (str, *optional*, defaults to current timestamp str): The name of the sub-directory of
            output_dir to save the images to.
    """
    if push_to_hub:
        if repo_id is None:
            raise ValueError("Must provide repo_id if push_to_hub is True.")

    name = name or time.strftime("%Y%m%d-%H%M%S")
    save_path = Path(output_dir) / name
    save_path.mkdir(exist_ok=False, parents=True)
    prompt_config_path = save_path / "prompt_config.json"

    num_images = batch_size * num_batches
    seeds = seeds or random.choice(list(range(0, 9999999)))
    prng_seed = jax.random.PRNGKey(seeds)

    if upsample:
        if getattr(pipeline, "upsampler", None) is None:
            pipeline.upsampler = RealESRGANModel.from_pretrained("nateraw/real-esrgan")
            if not torch.cuda.is_available():
                print("Upsampling is recommended to be done on a GPU, as it is very slow on CPU")
            else:
                pipeline.upsampler = pipeline.upsampler.cuda()

    cfg = dict(
        prompt=prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        upsample=upsample,
        height=height,
        width=width,
        scheduler=dict(pipeline.scheduler.config),
        # tiled=pipeline.tiled,
        diffusers_version=diffusers_version,
        device_name=torch.cuda.get_device_name(0) if torch.cuda.is_available() else "unknown",
    )
    prompt_config_path.write_text(json.dumps(cfg, indent=2, sort_keys=False))

    NUM_TPU_CORES = jax.device_count()
    jit = True  # force jit, assume params are already sharded
    batch_size_total = NUM_TPU_CORES * batch_size if jit else batch_size

    def generate_input_batches(prompts, batch_size):
        prompt_batch = None
        for batch_idx in range(math.ceil(len(prompts) / batch_size)):
            prompt_batch = prompts[batch_idx * batch_size : (batch_idx + 1) * batch_size]
            yield batch_idx, prompt_batch

    frame_index = 0
    frame_filepaths = []
    for batch_idx, prompt_batch in generate_input_batches([prompt] * num_images, batch_size_total):
        # This batch size correspond to each TPU core, so we are generating batch_size * NUM_TPU_CORES images
        print(f"Generating batches: {batch_idx*NUM_TPU_CORES} - {min((batch_idx+1)*NUM_TPU_CORES, num_batches)}")
        prompt_ids_batch = pipeline.prepare_inputs(prompt_batch)
        prng_seed_batch = prng_seed

        if jit:
            padded = False
            # Check if len of prompt_batch is multiple of NUM_TPU_CORES, if not pad its ids
            if len(prompt_batch) % NUM_TPU_CORES != 0:
                padded = True
                pad_size = NUM_TPU_CORES - (len(prompt_batch) % NUM_TPU_CORES)
                # Pad embeds_batch and noise_batch with zeros in batch dimension
                prompt_ids_batch = pad_along_axis(prompt_ids_batch, pad_size, axis=0)

            prompt_ids_batch = shard(prompt_ids_batch)
            prng_seed_batch = jax.random.split(prng_seed, jax.device_count())

        outputs = pipeline(
            params,
            prng_seed=prng_seed_batch,
            prompt_ids=prompt_ids_batch,
            height=height,
            width=width,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            output_type="pil" if not upsample else "numpy",
            jit=jit,
        )["images"]

        if jit:
            # check if we padded and remove that padding from outputs
            if padded:
                outputs = outputs[:-pad_size]

        if upsample:
            images = []
            for output in outputs:
                images.append(pipeline.upsampler(output))
        else:
            images = outputs

        for image in images:
            uuid = str(uuid4())
            frame_filepath = save_path / f"{uuid}{image_file_ext}"
            image.save(frame_filepath)
            frame_filepaths.append(str(frame_filepath))
            frame_index += 1

    return frame_filepaths

    if push_to_hub:
        upload_folder_chunked(repo_id, save_path, private=private, create_pr=create_pr)