File size: 4,222 Bytes
2a37fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from pathlib import Path
from typing import Union

import librosa
import numpy as np
import torch
from PIL import Image
from torchvision.io import write_video
from torchvision.transforms.functional import pil_to_tensor


def get_timesteps_arr(audio_filepath, offset, duration, fps=30, margin=1.0, smooth=0.0):
    y, sr = librosa.load(audio_filepath, offset=offset, duration=duration)

    # librosa.stft hardcoded defaults...
    # n_fft defaults to 2048
    # hop length is win_length // 4
    # win_length defaults to n_fft
    D = librosa.stft(y, n_fft=2048, hop_length=2048 // 4, win_length=2048)

    # Extract percussive elements
    D_harmonic, D_percussive = librosa.decompose.hpss(D, margin=margin)
    y_percussive = librosa.istft(D_percussive, length=len(y))

    # Get normalized melspectrogram
    spec_raw = librosa.feature.melspectrogram(y=y_percussive, sr=sr)
    spec_max = np.amax(spec_raw, axis=0)
    spec_norm = (spec_max - np.min(spec_max)) / np.ptp(spec_max)

    # Resize cumsum of spec norm to our desired number of interpolation frames
    x_norm = np.linspace(0, spec_norm.shape[-1], spec_norm.shape[-1])
    y_norm = np.cumsum(spec_norm)
    y_norm /= y_norm[-1]
    x_resize = np.linspace(0, y_norm.shape[-1], int(duration * fps))

    T = np.interp(x_resize, x_norm, y_norm)

    # Apply smoothing
    return T * (1 - smooth) + np.linspace(0.0, 1.0, T.shape[0]) * smooth


def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
    """helper function to spherically interpolate two arrays v1 v2"""

    inputs_are_torch = isinstance(v0, torch.Tensor)
    if inputs_are_torch:
        input_device = v0.device
        v0 = v0.cpu().numpy()
        v1 = v1.cpu().numpy()

    dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
    if np.abs(dot) > DOT_THRESHOLD:
        v2 = (1 - t) * v0 + t * v1
    else:
        theta_0 = np.arccos(dot)
        sin_theta_0 = np.sin(theta_0)
        theta_t = theta_0 * t
        sin_theta_t = np.sin(theta_t)
        s0 = np.sin(theta_0 - theta_t) / sin_theta_0
        s1 = sin_theta_t / sin_theta_0
        v2 = s0 * v0 + s1 * v1

    if inputs_are_torch:
        v2 = torch.from_numpy(v2).to(input_device)

    return v2


def make_video_pyav(
    frames_or_frame_dir: Union[str, Path, torch.Tensor],
    audio_filepath: Union[str, Path] = None,
    fps: int = 30,
    audio_offset: int = 0,
    audio_duration: int = 2,
    sr: int = 22050,
    output_filepath: Union[str, Path] = "output.mp4",
    glob_pattern: str = "*.png",
):
    """
    TODO - docstring here
    frames_or_frame_dir: (Union[str, Path, torch.Tensor]):
        Either a directory of images, or a tensor of shape (T, C, H, W) in range [0, 255].
    """

    # Torchvision write_video doesn't support pathlib paths
    output_filepath = str(output_filepath)

    if isinstance(frames_or_frame_dir, (str, Path)):
        frames = None
        for img in sorted(Path(frames_or_frame_dir).glob(glob_pattern)):
            frame = pil_to_tensor(Image.open(img)).unsqueeze(0)
            frames = frame if frames is None else torch.cat([frames, frame])
    else:
        frames = frames_or_frame_dir

    # TCHW -> THWC
    frames = frames.permute(0, 2, 3, 1)

    if audio_filepath:
        # Read audio, convert to tensor
        audio, sr = librosa.load(
            audio_filepath,
            sr=sr,
            mono=True,
            offset=audio_offset,
            duration=audio_duration,
        )
        audio_tensor = torch.tensor(audio).unsqueeze(0)

        write_video(
            output_filepath,
            frames,
            fps=fps,
            audio_array=audio_tensor,
            audio_fps=sr,
            audio_codec="aac",
            options={"crf": "10", "pix_fmt": "yuv420p"},
        )
    else:
        write_video(
            output_filepath,
            frames,
            fps=fps,
            options={"crf": "10", "pix_fmt": "yuv420p"},
        )

    return output_filepath


def pad_along_axis(array: np.ndarray, pad_size: int, axis: int = 0) -> np.ndarray:
    if pad_size <= 0:
        return array
    npad = [(0, 0)] * array.ndim
    npad[axis] = (0, pad_size)
    return np.pad(array, pad_width=npad, mode="constant", constant_values=0)