kadirnar's picture
Update video_diffusion/inpaint_zoom/zoom_in_app.py
d675941
import os
import gradio as gr
import numpy as np
import torch
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from PIL import Image
from video_diffusion.inpaint_zoom.utils.zoom_in_utils import dummy, image_grid, shrink_and_paste_on_blank, write_video
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
stable_paint_model_list = [
"stabilityai/stable-diffusion-2-inpainting",
"runwayml/stable-diffusion-inpainting",
"SG161222/Realistic_Vision_V5.1_noVAE",
"SimianLuo/LCM_Dreamshaper_v7"
]
stable_paint_prompt_list = [
"children running in the forest , sunny, bright, by studio ghibli painting, superior quality, masterpiece, traditional Japanese colors, by Grzegorz Rutkowski, concept art",
"A beautiful landscape of a mountain range with a lake in the foreground",
]
stable_paint_negative_prompt_list = [
"lurry, bad art, blurred, text, watermark",
]
class StableDiffusionZoomIn:
def __init__(self):
self.pipe = None
def load_model(self, model_id):
if self.pipe is None:
self.pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16")
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe = self.pipe.to("cuda")
self.pipe.safety_checker = dummy
self.pipe.enable_attention_slicing()
self.pipe.enable_xformers_memory_efficient_attention()
self.g_cuda = torch.Generator(device="cuda")
return self.pipe
def generate_video(
self,
model_id,
prompt,
negative_prompt,
guidance_scale,
num_inference_steps,
):
pipe = self.load_model(model_id)
num_init_images = 2
seed = 42
height = 512
width = height
current_image = Image.new(mode="RGBA", size=(height, width))
mask_image = np.array(current_image)[:, :, 3]
mask_image = Image.fromarray(255 - mask_image).convert("RGB")
current_image = current_image.convert("RGB")
init_images = pipe(
prompt=[prompt] * num_init_images,
negative_prompt=[negative_prompt] * num_init_images,
image=current_image,
guidance_scale=guidance_scale,
height=height,
width=width,
generator=self.g_cuda.manual_seed(seed),
mask_image=mask_image,
num_inference_steps=num_inference_steps,
)[0]
image_grid(init_images, rows=1, cols=num_init_images)
init_image_selected = 1 # @param
if num_init_images == 1:
init_image_selected = 0
else:
init_image_selected = init_image_selected - 1
num_outpainting_steps = 20 # @param
mask_width = 128 # @param
num_interpol_frames = 30 # @param
current_image = init_images[init_image_selected]
all_frames = []
all_frames.append(current_image)
for i in range(num_outpainting_steps):
print("Generating image: " + str(i + 1) + " / " + str(num_outpainting_steps))
prev_image_fix = current_image
prev_image = shrink_and_paste_on_blank(current_image, mask_width)
current_image = prev_image
# create mask (black image with white mask_width width edges)
mask_image = np.array(current_image)[:, :, 3]
mask_image = Image.fromarray(255 - mask_image).convert("RGB")
# inpainting step
current_image = current_image.convert("RGB")
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=current_image,
guidance_scale=guidance_scale,
height=height,
width=width,
# this can make the whole thing deterministic but the output less exciting
# generator = g_cuda.manual_seed(seed),
mask_image=mask_image,
num_inference_steps=num_inference_steps,
)[0]
current_image = images[0]
current_image.paste(prev_image, mask=prev_image)
# interpolation steps bewteen 2 inpainted images (=sequential zoom and crop)
for j in range(num_interpol_frames - 1):
interpol_image = current_image
interpol_width = round(
(1 - (1 - 2 * mask_width / height) ** (1 - (j + 1) / num_interpol_frames)) * height / 2
)
interpol_image = interpol_image.crop(
(interpol_width, interpol_width, width - interpol_width, height - interpol_width)
)
interpol_image = interpol_image.resize((height, width))
# paste the higher resolution previous image in the middle to avoid drop in quality caused by zooming
interpol_width2 = round((1 - (height - 2 * mask_width) / (height - 2 * interpol_width)) / 2 * height)
prev_image_fix_crop = shrink_and_paste_on_blank(prev_image_fix, interpol_width2)
interpol_image.paste(prev_image_fix_crop, mask=prev_image_fix_crop)
all_frames.append(interpol_image)
all_frames.append(current_image)
video_file_name = "infinite_zoom_out"
fps = 30
save_path = video_file_name + ".mp4"
write_video(save_path, all_frames, fps)
return save_path
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
text2image_in_model_path = gr.Dropdown(
choices=stable_paint_model_list, value=stable_paint_model_list[0], label="Text-Image Model Id"
)
text2image_in_prompt = gr.Textbox(lines=2, value=stable_paint_prompt_list[0], label="Prompt")
text2image_in_negative_prompt = gr.Textbox(
lines=1, value=stable_paint_negative_prompt_list[0], label="Negative Prompt"
)
with gr.Row():
with gr.Column():
text2image_in_guidance_scale = gr.Slider(
minimum=0.1, maximum=15, step=0.1, value=7.5, label="Guidance Scale"
)
text2image_in_num_inference_step = gr.Slider(
minimum=1, maximum=100, step=1, value=50, label="Num Inference Step"
)
text2image_in_predict = gr.Button(value="Generator")
with gr.Column():
output_image = gr.Video(label="Output")
text2image_in_predict.click(
fn=StableDiffusionZoomIn().generate_video,
inputs=[
text2image_in_model_path,
text2image_in_prompt,
text2image_in_negative_prompt,
text2image_in_guidance_scale,
text2image_in_num_inference_step,
],
outputs=output_image,
)