Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import numpy as np | |
import torch | |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler | |
from PIL import Image | |
from video_diffusion.inpaint_zoom.utils.zoom_in_utils import dummy, image_grid, shrink_and_paste_on_blank, write_video | |
os.environ["CUDA_VISIBLE_DEVICES"] = "0" | |
stable_paint_model_list = [ | |
"stabilityai/stable-diffusion-2-inpainting", | |
"runwayml/stable-diffusion-inpainting", | |
"SG161222/Realistic_Vision_V5.1_noVAE", | |
"SimianLuo/LCM_Dreamshaper_v7" | |
] | |
stable_paint_prompt_list = [ | |
"children running in the forest , sunny, bright, by studio ghibli painting, superior quality, masterpiece, traditional Japanese colors, by Grzegorz Rutkowski, concept art", | |
"A beautiful landscape of a mountain range with a lake in the foreground", | |
] | |
stable_paint_negative_prompt_list = [ | |
"lurry, bad art, blurred, text, watermark", | |
] | |
class StableDiffusionZoomIn: | |
def __init__(self): | |
self.pipe = None | |
def load_model(self, model_id): | |
if self.pipe is None: | |
self.pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16") | |
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe = self.pipe.to("cuda") | |
self.pipe.safety_checker = dummy | |
self.pipe.enable_attention_slicing() | |
self.pipe.enable_xformers_memory_efficient_attention() | |
self.g_cuda = torch.Generator(device="cuda") | |
return self.pipe | |
def generate_video( | |
self, | |
model_id, | |
prompt, | |
negative_prompt, | |
guidance_scale, | |
num_inference_steps, | |
): | |
pipe = self.load_model(model_id) | |
num_init_images = 2 | |
seed = 42 | |
height = 512 | |
width = height | |
current_image = Image.new(mode="RGBA", size=(height, width)) | |
mask_image = np.array(current_image)[:, :, 3] | |
mask_image = Image.fromarray(255 - mask_image).convert("RGB") | |
current_image = current_image.convert("RGB") | |
init_images = pipe( | |
prompt=[prompt] * num_init_images, | |
negative_prompt=[negative_prompt] * num_init_images, | |
image=current_image, | |
guidance_scale=guidance_scale, | |
height=height, | |
width=width, | |
generator=self.g_cuda.manual_seed(seed), | |
mask_image=mask_image, | |
num_inference_steps=num_inference_steps, | |
)[0] | |
image_grid(init_images, rows=1, cols=num_init_images) | |
init_image_selected = 1 # @param | |
if num_init_images == 1: | |
init_image_selected = 0 | |
else: | |
init_image_selected = init_image_selected - 1 | |
num_outpainting_steps = 20 # @param | |
mask_width = 128 # @param | |
num_interpol_frames = 30 # @param | |
current_image = init_images[init_image_selected] | |
all_frames = [] | |
all_frames.append(current_image) | |
for i in range(num_outpainting_steps): | |
print("Generating image: " + str(i + 1) + " / " + str(num_outpainting_steps)) | |
prev_image_fix = current_image | |
prev_image = shrink_and_paste_on_blank(current_image, mask_width) | |
current_image = prev_image | |
# create mask (black image with white mask_width width edges) | |
mask_image = np.array(current_image)[:, :, 3] | |
mask_image = Image.fromarray(255 - mask_image).convert("RGB") | |
# inpainting step | |
current_image = current_image.convert("RGB") | |
images = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=current_image, | |
guidance_scale=guidance_scale, | |
height=height, | |
width=width, | |
# this can make the whole thing deterministic but the output less exciting | |
# generator = g_cuda.manual_seed(seed), | |
mask_image=mask_image, | |
num_inference_steps=num_inference_steps, | |
)[0] | |
current_image = images[0] | |
current_image.paste(prev_image, mask=prev_image) | |
# interpolation steps bewteen 2 inpainted images (=sequential zoom and crop) | |
for j in range(num_interpol_frames - 1): | |
interpol_image = current_image | |
interpol_width = round( | |
(1 - (1 - 2 * mask_width / height) ** (1 - (j + 1) / num_interpol_frames)) * height / 2 | |
) | |
interpol_image = interpol_image.crop( | |
(interpol_width, interpol_width, width - interpol_width, height - interpol_width) | |
) | |
interpol_image = interpol_image.resize((height, width)) | |
# paste the higher resolution previous image in the middle to avoid drop in quality caused by zooming | |
interpol_width2 = round((1 - (height - 2 * mask_width) / (height - 2 * interpol_width)) / 2 * height) | |
prev_image_fix_crop = shrink_and_paste_on_blank(prev_image_fix, interpol_width2) | |
interpol_image.paste(prev_image_fix_crop, mask=prev_image_fix_crop) | |
all_frames.append(interpol_image) | |
all_frames.append(current_image) | |
video_file_name = "infinite_zoom_out" | |
fps = 30 | |
save_path = video_file_name + ".mp4" | |
write_video(save_path, all_frames, fps) | |
return save_path | |
def app(): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
text2image_in_model_path = gr.Dropdown( | |
choices=stable_paint_model_list, value=stable_paint_model_list[0], label="Text-Image Model Id" | |
) | |
text2image_in_prompt = gr.Textbox(lines=2, value=stable_paint_prompt_list[0], label="Prompt") | |
text2image_in_negative_prompt = gr.Textbox( | |
lines=1, value=stable_paint_negative_prompt_list[0], label="Negative Prompt" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
text2image_in_guidance_scale = gr.Slider( | |
minimum=0.1, maximum=15, step=0.1, value=7.5, label="Guidance Scale" | |
) | |
text2image_in_num_inference_step = gr.Slider( | |
minimum=1, maximum=100, step=1, value=50, label="Num Inference Step" | |
) | |
text2image_in_predict = gr.Button(value="Generator") | |
with gr.Column(): | |
output_image = gr.Video(label="Output") | |
text2image_in_predict.click( | |
fn=StableDiffusionZoomIn().generate_video, | |
inputs=[ | |
text2image_in_model_path, | |
text2image_in_prompt, | |
text2image_in_negative_prompt, | |
text2image_in_guidance_scale, | |
text2image_in_num_inference_step, | |
], | |
outputs=output_image, | |
) | |