Spaces:
Runtime error
Runtime error
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py | |
from dataclasses import dataclass | |
from typing import Optional | |
import torch | |
import torch.nn.functional as F | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.attention import AdaLayerNorm, FeedForward | |
from diffusers.models.cross_attention import CrossAttention | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.utils import BaseOutput | |
from diffusers.utils.import_utils import is_xformers_available | |
from einops import rearrange, repeat | |
from torch import nn | |
class Transformer3DModelOutput(BaseOutput): | |
sample: torch.FloatTensor | |
if is_xformers_available(): | |
import xformers | |
import xformers.ops | |
else: | |
xformers = None | |
class Transformer3DModel(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
): | |
super().__init__() | |
self.use_linear_projection = use_linear_projection | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
inner_dim = num_attention_heads * attention_head_dim | |
# Define input layers | |
self.in_channels = in_channels | |
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
if use_linear_projection: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
else: | |
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
# Define transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
) | |
for d in range(num_layers) | |
] | |
) | |
# 4. Define output layers | |
if use_linear_projection: | |
self.proj_out = nn.Linear(in_channels, inner_dim) | |
else: | |
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True): | |
# Input | |
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
video_length = hidden_states.shape[2] | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b f) n c", f=video_length) | |
batch, channel, height, weight = hidden_states.shape | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
if not self.use_linear_projection: | |
hidden_states = self.proj_in(hidden_states) | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
else: | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
hidden_states = self.proj_in(hidden_states) | |
# Blocks | |
for block in self.transformer_blocks: | |
hidden_states = block( | |
hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, video_length=video_length | |
) | |
# Output | |
if not self.use_linear_projection: | |
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
hidden_states = self.proj_out(hidden_states) | |
else: | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
output = hidden_states + residual | |
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) | |
if not return_dict: | |
return (output,) | |
return Transformer3DModelOutput(sample=output) | |
class BasicTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm = num_embeds_ada_norm is not None | |
# SC-Attn | |
self.attn1 = SparseCausalAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
# Cross-Attn | |
if cross_attention_dim is not None: | |
self.attn2 = CrossAttention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
else: | |
self.attn2 = None | |
if cross_attention_dim is not None: | |
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
else: | |
self.norm2 = None | |
# Feed-forward | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) | |
self.norm3 = nn.LayerNorm(dim) | |
# Temp-Attn | |
self.attn_temp = CrossAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
nn.init.zeros_(self.attn_temp.to_out[0].weight.data) | |
self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool): | |
if not is_xformers_available(): | |
print("Here is how to install it") | |
raise ModuleNotFoundError( | |
"Refer to https://github.com/facebookresearch/xformers for more information on how to install" | |
" xformers", | |
name="xformers", | |
) | |
elif not torch.cuda.is_available(): | |
raise ValueError( | |
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only" | |
" available for GPU " | |
) | |
else: | |
try: | |
# Make sure we can run the memory efficient attention | |
_ = xformers.ops.memory_efficient_attention( | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
) | |
except Exception as e: | |
raise e | |
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
if self.attn2 is not None: | |
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
# self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None): | |
# SparseCausal-Attention | |
norm_hidden_states = ( | |
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) | |
) | |
if self.only_cross_attention: | |
hidden_states = ( | |
self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states | |
) | |
else: | |
hidden_states = ( | |
self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states | |
) | |
if self.attn2 is not None: | |
# Cross-Attention | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
) | |
hidden_states = ( | |
self.attn2( | |
norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask | |
) | |
+ hidden_states | |
) | |
# Feed-forward | |
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
# Temporal-Attention | |
d = hidden_states.shape[1] | |
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) | |
norm_hidden_states = ( | |
self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states) | |
) | |
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states | |
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) | |
return hidden_states | |
class SparseCausalAttention(CrossAttention): | |
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): | |
batch_size, sequence_length, _ = hidden_states.shape | |
encoder_hidden_states = encoder_hidden_states | |
if self.group_norm is not None: | |
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = self.to_q(hidden_states) | |
dim = query.shape[-1] | |
query = self.reshape_heads_to_batch_dim(query) | |
if self.added_kv_proj_dim is not None: | |
raise NotImplementedError | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
key = self.to_k(encoder_hidden_states) | |
value = self.to_v(encoder_hidden_states) | |
former_frame_index = torch.arange(video_length) - 1 | |
former_frame_index[0] = 0 | |
key = rearrange(key, "(b f) d c -> b f d c", f=video_length) | |
key = torch.cat([key[:, [0] * video_length], key[:, former_frame_index]], dim=2) | |
key = rearrange(key, "b f d c -> (b f) d c") | |
value = rearrange(value, "(b f) d c -> b f d c", f=video_length) | |
value = torch.cat([value[:, [0] * video_length], value[:, former_frame_index]], dim=2) | |
value = rearrange(value, "b f d c -> (b f) d c") | |
key = self.reshape_heads_to_batch_dim(key) | |
value = self.reshape_heads_to_batch_dim(value) | |
if attention_mask is not None: | |
if attention_mask.shape[-1] != query.shape[1]: | |
target_length = query.shape[1] | |
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
# attention, what we cannot get enough of | |
if self._use_memory_efficient_attention_xformers: | |
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
# Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
hidden_states = hidden_states.to(query.dtype) | |
else: | |
if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
hidden_states = self._attention(query, key, value, attention_mask) | |
else: | |
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
return hidden_states | |