Spaces:
Runtime error
Runtime error
update
Browse files
app.py
CHANGED
@@ -7,13 +7,27 @@ os.environ["CUDA_VISIBLE_DEVICES"]="0"
|
|
7 |
import torch
|
8 |
import gradio as gr
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def stable_diffusion_zoom_out(
|
12 |
repo_id="stabilityai/stable-diffusion-2-inpainting",
|
13 |
-
original_prompt
|
14 |
-
negative_prompt
|
15 |
steps=32,
|
16 |
num_frames=10,
|
|
|
|
|
17 |
):
|
18 |
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, revision="fp16")
|
19 |
pipe.set_use_memory_efficient_attention_xformers(True)
|
@@ -21,7 +35,7 @@ def stable_diffusion_zoom_out(
|
|
21 |
pipe = pipe.to("cuda")
|
22 |
pipe.safety_checker = dummy
|
23 |
|
24 |
-
current_image = Image.new(mode="RGBA", size=(
|
25 |
mask_image = np.array(current_image)[:,:,3] # assume image has alpha mask (use .mode to check for "RGBA")
|
26 |
mask_image = Image.fromarray(255-mask_image).convert("RGB")
|
27 |
current_image = current_image.convert("RGB")
|
@@ -38,11 +52,11 @@ def stable_diffusion_zoom_out(
|
|
38 |
|
39 |
for i in range(num_frames):
|
40 |
next_image = np.array(current_image.convert("RGBA"))*0
|
41 |
-
prev_image = current_image.resize((
|
42 |
prev_image = prev_image.convert("RGBA")
|
43 |
prev_image = np.array(prev_image)
|
44 |
next_image[:, :, 3] = 1
|
45 |
-
next_image[steps:
|
46 |
prev_image = Image.fromarray(next_image)
|
47 |
current_image = prev_image
|
48 |
mask_image = np.array(current_image)[:,:,3] # assume image has alpha mask (use .mode to check for "RGBA")
|
@@ -58,12 +72,15 @@ def stable_diffusion_zoom_out(
|
|
58 |
return save_path
|
59 |
|
60 |
inputs = [
|
61 |
-
gr.Dropdown(
|
62 |
-
gr.inputs.Textbox(lines=1, default=
|
63 |
-
gr.inputs.Textbox(lines=1, default=
|
64 |
gr.inputs.Slider(minimum=1, maximum=64, default=32, label="Steps"),
|
65 |
-
gr.inputs.Slider(minimum=1, maximum=
|
|
|
|
|
66 |
]
|
|
|
67 |
output = gr.outputs.Video()
|
68 |
title = "Stable Diffusion Infinite Zoom Out"
|
69 |
|
|
|
7 |
import torch
|
8 |
import gradio as gr
|
9 |
|
10 |
+
best_model_list = [
|
11 |
+
"runwayml/stable-diffusion-v1-5",
|
12 |
+
"CompVis/stable-diffusion-v1-4",
|
13 |
+
"prompthero/openjourney",
|
14 |
+
"dreamlike-art/dreamlike-photoreal-2.0",
|
15 |
+
"dreamlike-art/dreamlike-diffusion-1.0",
|
16 |
+
"stabilityai/stable-diffusion-2-inpainting"
|
17 |
+
]
|
18 |
+
|
19 |
+
orig_prompt = "Create a relaxing atmosphere with the use of plants and other natural elements. Such as a hanging terrarium or a wall-mounted planter. Include plenty of storage options to keep the space organized and clutter-free. Consider adding a vanity with double sinks and plenty of drawers and cabinets. As well as a wall mounted medicine and towel storage."
|
20 |
+
orig_negative_prompt = "lurry, bad art, blurred, text, watermark"
|
21 |
+
|
22 |
|
23 |
def stable_diffusion_zoom_out(
|
24 |
repo_id="stabilityai/stable-diffusion-2-inpainting",
|
25 |
+
original_prompt,
|
26 |
+
negative_prompt,
|
27 |
steps=32,
|
28 |
num_frames=10,
|
29 |
+
image_size=512,
|
30 |
+
fps=16
|
31 |
):
|
32 |
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, revision="fp16")
|
33 |
pipe.set_use_memory_efficient_attention_xformers(True)
|
|
|
35 |
pipe = pipe.to("cuda")
|
36 |
pipe.safety_checker = dummy
|
37 |
|
38 |
+
current_image = Image.new(mode="RGBA", size=(image_size,image_size))
|
39 |
mask_image = np.array(current_image)[:,:,3] # assume image has alpha mask (use .mode to check for "RGBA")
|
40 |
mask_image = Image.fromarray(255-mask_image).convert("RGB")
|
41 |
current_image = current_image.convert("RGB")
|
|
|
52 |
|
53 |
for i in range(num_frames):
|
54 |
next_image = np.array(current_image.convert("RGBA"))*0
|
55 |
+
prev_image = current_image.resize((image_size-2*steps,image_size-2*steps))
|
56 |
prev_image = prev_image.convert("RGBA")
|
57 |
prev_image = np.array(prev_image)
|
58 |
next_image[:, :, 3] = 1
|
59 |
+
next_image[steps:image_size-steps,steps:image_size-steps,:] = prev_image
|
60 |
prev_image = Image.fromarray(next_image)
|
61 |
current_image = prev_image
|
62 |
mask_image = np.array(current_image)[:,:,3] # assume image has alpha mask (use .mode to check for "RGBA")
|
|
|
72 |
return save_path
|
73 |
|
74 |
inputs = [
|
75 |
+
gr.Dropdown(choices=best_model_list,default="stabilityai/stable-diffusion-2-inpainting",label="Model"),
|
76 |
+
gr.inputs.Textbox(lines=1, default=orig_prompt, label="Prompt"),
|
77 |
+
gr.inputs.Textbox(lines=1, default=orig_negative_prompt, label="Negative Prompt"),
|
78 |
gr.inputs.Slider(minimum=1, maximum=64, default=32, label="Steps"),
|
79 |
+
gr.inputs.Slider(minimum=1, maximum=500, default=10, step=10, label="Frames"),
|
80 |
+
gr.inputs.Slider(minimum=128, maximum=1024, default=512, step=256, label="Image Size"),
|
81 |
+
gr.inputs.Slider(minimum=1, maximum=100, default=16, step=1, label="FPS")
|
82 |
]
|
83 |
+
|
84 |
output = gr.outputs.Video()
|
85 |
title = "Stable Diffusion Infinite Zoom Out"
|
86 |
|