File size: 10,277 Bytes
22fb4ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
# Multi-turn Dialogue Data Pipeline
- [Using Dataset in HuggingFace Hub](#using-dataset-in-huggingface-hub)
- [Using Custom Datasets](#using-custom-datasets)
The purpose of multi-turn dialogue command fine-tuning is to enhance the model's ability for multi-turn dialogues.
XTuner supports the use of HuggingFace Hub datasets or custom datasets for SFT (Supervised FineTune). The main difference between them is that when using the HuggingFace Hub dataset, the original data needs to be mapped to the [multi-turn dialogue data format](./dataset_format.md#multi-turn-dialogue-dataset-format) defined by XTuner. For custom datasets, it is recommended that users construct the dataset according to the [multi-turn dialogue data format](./dataset_format.md#multi-turn-dialogue-dataset-format).
## Using Dataset in HuggingFace Hub
### Step 1, Map Original Dataset to Standard Format
Since the formats of different datasets vary, the original data needs to be transformed into the [multi-turn dialogue data format](./dataset_format.md#multi-turn-dialogue-dataset-format) defined by XTuner. XTuner supports the use of a map function to achieve format mapping. The following example uses the [oasst1 dataset](https://huggingface.co/datasets/OpenAssistant/oasst1) to illustrate how to implement data mapping.
The oasst1 dataset format is as follows:
```python
>>> from datasets import load_dataset
>>> ds = load_dataset(path='timdettmers/openassistant-guanaco')
>>> ds['train']
Dataset({
features: ['text'],
num_rows: 9846
})
>>> ds['train'][0]['text']
'### Human: xxx ### Assistant: xxx ###Human: xxx ###Assistant: xxx'
```
It's clear that the oasst1 dataset can not only be used as an incremental pre-training dataset for the model to learn some basic language knowledge, but also, after some processing, serve as a multi-turn dialogue dataset to cultivate the model's multi-turn conversation capabilities. The [multi-turn dialogue data format](./dataset_format.md#multi-turn-dialogue-dataset-format) introduces that in the fine-tuning process of multi-turn dialogue instructions, the data format should be:
```json
[{
"conversation":[
{
"system": "xxx",
"input": "xxx",
"output": "xxx"
},
{
"input": "xxx",
"output": "xxx"
}
]
},
{
"conversation":[
{
"system": "xxx",
"input": "xxx",
"output": "xxx"
},
{
"input": "xxx",
"output": "xxx"
}
]
}]
```
Therefore, the original data can be mapped to a standard format using the following map function:
```python
# Suppose the function is stored in ./map_fn.py
SYSTEM_OASST1 = '' # oasst1 does not set the system text
def custom_map_fn(example):
r"""
Example before preprocessing:
example['text'] = '### Human: Can you explain xxx'
'### Assistant: Sure! xxx'
'### Human: I didn't understand how xxx'
'### Assistant: It has to do with a process xxx.'
Example after preprocessing:
example['conversation'] = [
{
'input': 'Can you explain xxx',
'output': 'Sure! xxx'
},
{
'input': 'I didn't understand how xxx',
'output': 'It has to do with a process xxx.'
}
]
"""
data = []
for sentence in example['text'].strip().split('###'):
sentence = sentence.strip()
if sentence[:6] == 'Human:':
data.append(sentence[6:].strip())
elif sentence[:10] == 'Assistant:':
data.append(sentence[10:].strip())
if len(data) % 2:
# The last round of conversation solely consists of input
# without any output.
# Discard the input part of the last round, as this part is ignored in
# the loss calculation.
data.pop()
conversation = []
for i in range(0, len(data), 2):
system = SYSTEM_OASST1 if i == 0 else ''
single_turn_conversation = {
'system': system,
'input': data[i],
'output': data[i + 1]}
conversation.append(single_turn_conversation)
return {'conversation': conversation}
```
### Step 2, List Candidate Model Names
XTuner provides several ready-to-use configuration files. Users can view them using the following command:
```bash
xtuner list-cfg -p internlm
```
`-p` is used for fuzzy search. If you want to train other models, you can replace `internlm` with other model names supported by XTuner.
### Step 3, Export the Config File
If the provided configuration file does not meet your needs, please export the offered configuration file and make appropriate changes:
```bash
xtuner copy-cfg ${CONFIG_NAME} ${SAVE_DIR}
```
For example, use the following command to export the config named `internlm_7b_qlora_oasst1_e3` to the current directory:
```bash
xtuner copy-cfg internlm_7b_qlora_oasst1_e3 .
```
### Step 4, Modify Config Files
The config file copied in Step 3 needs to be modified as follows:
1. Import the map function `custom_map_fn` implemented in Step 1.
2. Replace `dataset_map_fn` in `train_dataset` with `custom_map_fn`.
3. Adjust the path of the original dataset. You can refer to the [user documentation](https://huggingface.co/docs/datasets/loading) for operations related to `load_dataset`.
```diff
from xtuner.dataset import process_hf_dataset
from datasets import load_dataset
- from xtuner.dataset.map_fns import oasst1_map_fn, template_map_fn_factory
+ from xtuner.dataset.map_fns import template_map_fn_factory
+ from mmengine.config import read_base
+ with read_base():
+ from .map_fn import custom_map_fn
...
#######################################################################
# PART 1 Settings #
#######################################################################
- data_path = 'timdettmers/openassistant-guanaco'
+ data_path = 'path/to/your/data'
...
#######################################################################
# STEP 3 Dataset & Dataloader #
#######################################################################
train_dataset = dict(
type=process_hf_dataset,
dataset=dict(type=load_dataset, path=data_path),
tokenizer=tokenizer,
max_length=max_length,
- dataset_map_fn=oasst1_map_fn,
+ dataset_map_fn=custom_map_fn,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
remove_unused_columns=True,
shuffle_before_pack=True,
pack_to_max_length=pack_to_max_length)
...
```
### Step 5, Check custom Dataset (Optional)
After modifying the config file, you can execute the 'xtuner/tools/check_custom_dataset.py' script to verify the correct construction of the dataset.
```bash
xtuner check-custom-dataset $CONFIG
```
`$CONFIG` represents the file path of the modified configuration file in Step 4.
## Using Custom Datasets
When using a custom multi-turn dialogue dataset for command fine-tuning, we recommend constructing the dataset in the [multi-turn dialogue data format](./dataset_format.md#multi-turn-dialogue-dataset-format) as defined by XTuner. If the custom dataset format is oasst1 or other formats, you can refer to the section on [Using Datasets in HuggingFace Hub](#using-dataset-in-huggingface-hub).
### Step 1, Dataset Preparation
Prepare your custom data according to the [multi-turn dialogue data format](./dataset_format.md#multi-turn-dialogue-dataset-format) defined by XTuner:
```json
[{
"conversation":[
{
"system": "xxx",
"input": "xxx",
"output": "xxx"
},
{
"input": "xxx",
"output": "xxx"
}
]
},
{
"conversation":[
{
"system": "xxx",
"input": "xxx",
"output": "xxx"
},
{
"input": "xxx",
"output": "xxx"
}
]
}]
```
### Step 2, List Candidate Model Names
```bash
xtuner list-cfg -p internlm
```
`-p` is for fuzzy search. If you want to train other models, you can replace `internlm` with other model names supported by XTuner.
### Step 3, Export the Config File
```bash
xtuner copy-cfg internlm_7b_qlora_oasst1_e3 .
```
### Step 4, Modify Config File
The config file copied in Step 3 needs to be modified as follows:
1. Adjust the path of the original dataset
2. Since the dataset format is already in the standard format, set `dataset_map_fn` in `train_dataset` to `None`
```diff
from xtuner.dataset import process_hf_dataset
from datasets import load_dataset
- from xtuner.dataset.map_fns import oasst1_map_fn, template_map_fn_factory
+ from xtuner.dataset.map_fns import template_map_fn_factory
...
#######################################################################
# PART 1 Settings #
#######################################################################
- data_path = 'timdettmers/openassistant-guanaco'
+ data_path = 'path/to/your/json/data'
...
#######################################################################
# STEP 3 Dataset & Dataloader #
#######################################################################
train_dataset = dict(
type=process_hf_dataset,
- dataset=dict(type=load_dataset, path=data_path),
+ dataset=dict(
+ type=load_dataset, path='json', data_files=dict(train=data_path)),
tokenizer=tokenizer,
max_length=max_length,
- dataset_map_fn=oasst1_map_fn,
+ dataset_map_fn=None,
template_map_fn=dict(
type=template_map_fn_factory, template=prompt_template),
remove_unused_columns=True,
shuffle_before_pack=True,
pack_to_max_length=pack_to_max_length)
...
```
### Step 5, Check custom Dataset (Optional)
After modifying the config file, you can execute the 'xtuner/tools/check_custom_dataset.py' script to verify the correct construction of the dataset.
```bash
xtuner check-custom-dataset $CONFIG
```
`$CONFIG` represents the file path of the modified configuration file in Step 4.
|