# Multi-turn Conversation Example 2 > \[!IMPORTANT\] > Data must be used in conjunction with the corresponding map_fn. ## Data `./data.json` ```json [{ "messages":[ { "role": "system", "content": "You are a helpful AI assistant." }, { "role": "user", "content": "Give three tips for staying healthy." }, { "role": "assistant", "content": "1.Eat a balanced diet. 2. Exercise regularly. 3. Get enough sleep." }, { "role": "user", "content": "How to study English?" }, { "role": "assistant", "content": "1. Set clear goals. 2. Create a study plan. 3. Build vocabulary. 4. Practice speaking." } ] }, { "messages":[ { "role": "system", "content": "You are a helpful AI assistant." }, { "role": "user", "content": "How to study English?" }, { "role": "assistant", "content": "1. Set clear goals. 2. Create a study plan. 3. Build vocabulary. 4. Practice speaking." }, { "role": "user", "content": "Give three tips for staying healthy." }, { "role": "assistant", "content": "1.Eat a balanced diet. 2. Exercise regularly. 3. Get enough sleep." } ] }] ``` ## Map Function `./map_fn.py` ```python def multi_turn_2_map_fn(example): messages = example['messages'] system = '' input = '' conversation = [] while messages and messages[0]['role'] == 'assistant': # Skip the first one if it is from assistant messages = messages[1:] for msg in messages: if msg['role'] == 'system': system = msg['content'] elif msg['role'] == 'user': input += msg['content'] elif msg['role'] == 'assistant': conversation.append({ 'system': system, 'input': input, 'output': msg['content'] }) system = '' input = '' else: raise NotImplementedError return {'conversation': conversation} ``` ## Config Based on [internlm_7b_qlora_json_e3](../../../xtuner/configs/internlm/internlm_7b/internlm_7b_qlora_json_e3.py). ```diff # Copyright (c) OpenMMLab. All rights reserved. import torch from datasets import load_dataset + from mmengine.config import read_base from mmengine.dataset import DefaultSampler from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, LoggerHook, ParamSchedulerHook) from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR from peft import LoraConfig from torch.optim import AdamW from transformers import (AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig) from xtuner.dataset import process_hf_dataset from xtuner.dataset.collate_fns import default_collate_fn from xtuner.dataset.map_fns import template_map_fn_factory from xtuner.engine.hooks import DatasetInfoHook, EvaluateChatHook from xtuner.engine.runner import TrainLoop from xtuner.model import SupervisedFinetune from xtuner.utils import PROMPT_TEMPLATE +with read_base(): + from .map_fn import multi_turn_2_map_fn as dataset_map_fn + ####################################################################### # PART 1 Settings # ####################################################################### # Model pretrained_model_name_or_path = 'internlm/internlm-7b' # Data -data_path = 'path/to/your/json_data' +data_path = './data.json' prompt_template = PROMPT_TEMPLATE.default max_length = 2048 pack_to_max_length = True # Scheduler & Optimizer batch_size = 1 # per_device accumulative_counts = 16 dataloader_num_workers = 0 max_epochs = 3 optim_type = AdamW lr = 2e-4 betas = (0.9, 0.999) weight_decay = 0 max_norm = 1 # grad clip # Save save_steps = 500 save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited) # Evaluate the generation performance during the training evaluation_freq = 500 SYSTEM = '' evaluation_inputs = [ '请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai' ] ####################################################################### # PART 2 Model & Tokenizer # ####################################################################### tokenizer = dict( type=AutoTokenizer.from_pretrained, pretrained_model_name_or_path=pretrained_model_name_or_path, trust_remote_code=True, padding_side='right') model = dict( type=SupervisedFinetune, llm=dict( type=AutoModelForCausalLM.from_pretrained, pretrained_model_name_or_path=pretrained_model_name_or_path, trust_remote_code=True, torch_dtype=torch.float16, quantization_config=dict( type=BitsAndBytesConfig, load_in_4bit=True, load_in_8bit=False, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4')), lora=dict( type=LoraConfig, r=64, lora_alpha=16, lora_dropout=0.1, bias='none', task_type='CAUSAL_LM')) ####################################################################### # PART 3 Dataset & Dataloader # ####################################################################### train_dataset = dict( type=process_hf_dataset, dataset=dict( type=load_dataset, path='json', data_files=dict(train=data_path)), tokenizer=tokenizer, max_length=max_length, + dataset_map_fn=dataset_map_fn, template_map_fn=dict( type=template_map_fn_factory, template=prompt_template), remove_unused_columns=True, shuffle_before_pack=True, pack_to_max_length=pack_to_max_length) train_dataloader = dict( batch_size=batch_size, num_workers=dataloader_num_workers, dataset=train_dataset, sampler=dict(type=DefaultSampler, shuffle=True), collate_fn=dict(type=default_collate_fn)) ####################################################################### # PART 4 Scheduler & Optimizer # ####################################################################### # optimizer optim_wrapper = dict( type=AmpOptimWrapper, optimizer=dict( type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), accumulative_counts=accumulative_counts, loss_scale='dynamic', dtype='float16') # learning policy # More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501 param_scheduler = dict( type=CosineAnnealingLR, eta_min=0.0, by_epoch=True, end=max_epochs, convert_to_iter_based=True) # train, val, test setting train_cfg = dict(type=TrainLoop, max_epochs=max_epochs) ####################################################################### # PART 5 Runtime # ####################################################################### # Log the dialogue periodically during the training process, optional custom_hooks = [ dict(type=DatasetInfoHook, tokenizer=tokenizer), dict( type=EvaluateChatHook, tokenizer=tokenizer, every_n_iters=evaluation_freq, evaluation_inputs=evaluation_inputs, system=SYSTEM, prompt_template=prompt_template) ] # configure default hooks default_hooks = dict( # record the time of every iteration. timer=dict(type=IterTimerHook), # print log every 10 iterations. logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10), # enable the parameter scheduler. param_scheduler=dict(type=ParamSchedulerHook), # save checkpoint per `save_steps`. checkpoint=dict( type=CheckpointHook, by_epoch=False, interval=save_steps, max_keep_ckpts=save_total_limit), # set sampler seed in distributed evrionment. sampler_seed=dict(type=DistSamplerSeedHook), ) # configure environment env_cfg = dict( # whether to enable cudnn benchmark cudnn_benchmark=False, # set multi process parameters mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), # set distributed parameters dist_cfg=dict(backend='nccl'), ) # set visualizer visualizer = None # set log level log_level = 'INFO' # load from which checkpoint load_from = None # whether to resume training from the loaded checkpoint resume = False # Defaults to use random seed and disable `deterministic` randomness = dict(seed=None, deterministic=False) # set log processor log_processor = dict(by_epoch=False) ``` ## Quick Start ```bash cd ./examples/demo_data/multi_turn_2 xtuner train config.py ``` # Multi-turn Conversation Example 2 ## Data `./data.json` ```json [{ "messages":[ { "role": "system", "content": "You are a helpful AI assistant." }, { "role": "user", "content": "Give three tips for staying healthy." }, { "role": "assistant", "content": "1.Eat a balanced diet. 2. Exercise regularly. 3. Get enough sleep." }, { "role": "user", "content": "How to study English?" }, { "role": "assistant", "content": "1. Set clear goals. 2. Create a study plan. 3. Build vocabulary. 4. Practice speaking." } ] }, { "messages":[ { "role": "system", "content": "You are a helpful AI assistant." }, { "role": "user", "content": "How to study English?" }, { "role": "assistant", "content": "1. Set clear goals. 2. Create a study plan. 3. Build vocabulary. 4. Practice speaking." }, { "role": "user", "content": "Give three tips for staying healthy." }, { "role": "assistant", "content": "1.Eat a balanced diet. 2. Exercise regularly. 3. Get enough sleep." } ] }] ``` ## Map Function `./map_fn.py` ```python def multi_turn_2_map_fn(example): messages = example['messages'] system = '' input = '' conversation = [] while messages and messages[0]['role'] == 'assistant': # Skip the first one if it is from assistant messages = messages[1:] for msg in messages: if msg['role'] == 'system': system = msg['content'] elif msg['role'] == 'user': input += msg['content'] elif msg['role'] == 'assistant': conversation.append({ 'system': system, 'input': input, 'output': msg['content'] }) system = '' input = '' else: raise NotImplementedError return {'conversation': conversation} ``` ## Config Based on [internlm_7b_qlora_json_e3](../../../xtuner/configs/internlm/internlm_7b/internlm_7b_qlora_json_e3.py). ```diff # Copyright (c) OpenMMLab. All rights reserved. import torch from datasets import load_dataset + from mmengine.config import read_base from mmengine.dataset import DefaultSampler from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, LoggerHook, ParamSchedulerHook) from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR from peft import LoraConfig from torch.optim import AdamW from transformers import (AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig) from xtuner.dataset import process_hf_dataset from xtuner.dataset.collate_fns import default_collate_fn from xtuner.dataset.map_fns import template_map_fn_factory from xtuner.engine.hooks import DatasetInfoHook, EvaluateChatHook from xtuner.engine.runner import TrainLoop from xtuner.model import SupervisedFinetune from xtuner.utils import PROMPT_TEMPLATE +with read_base(): + from .map_fn import multi_turn_2_map_fn as dataset_map_fn + ####################################################################### # PART 1 Settings # ####################################################################### # Model pretrained_model_name_or_path = 'internlm/internlm-7b' # Data -data_path = 'path/to/your/json_data' +data_path = './data.json' prompt_template = PROMPT_TEMPLATE.default max_length = 2048 pack_to_max_length = True # Scheduler & Optimizer batch_size = 1 # per_device accumulative_counts = 16 dataloader_num_workers = 0 max_epochs = 3 optim_type = AdamW lr = 2e-4 betas = (0.9, 0.999) weight_decay = 0 max_norm = 1 # grad clip # Save save_steps = 500 save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited) # Evaluate the generation performance during the training evaluation_freq = 500 SYSTEM = '' evaluation_inputs = [ '请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai' ] ####################################################################### # PART 2 Model & Tokenizer # ####################################################################### tokenizer = dict( type=AutoTokenizer.from_pretrained, pretrained_model_name_or_path=pretrained_model_name_or_path, trust_remote_code=True, padding_side='right') model = dict( type=SupervisedFinetune, llm=dict( type=AutoModelForCausalLM.from_pretrained, pretrained_model_name_or_path=pretrained_model_name_or_path, trust_remote_code=True, torch_dtype=torch.float16, quantization_config=dict( type=BitsAndBytesConfig, load_in_4bit=True, load_in_8bit=False, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4')), lora=dict( type=LoraConfig, r=64, lora_alpha=16, lora_dropout=0.1, bias='none', task_type='CAUSAL_LM')) ####################################################################### # PART 3 Dataset & Dataloader # ####################################################################### train_dataset = dict( type=process_hf_dataset, dataset=dict( type=load_dataset, path='json', data_files=dict(train=data_path)), tokenizer=tokenizer, max_length=max_length, + dataset_map_fn=dataset_map_fn, template_map_fn=dict( type=template_map_fn_factory, template=prompt_template), remove_unused_columns=True, shuffle_before_pack=True, pack_to_max_length=pack_to_max_length) train_dataloader = dict( batch_size=batch_size, num_workers=dataloader_num_workers, dataset=train_dataset, sampler=dict(type=DefaultSampler, shuffle=True), collate_fn=dict(type=default_collate_fn)) ####################################################################### # PART 4 Scheduler & Optimizer # ####################################################################### # optimizer optim_wrapper = dict( type=AmpOptimWrapper, optimizer=dict( type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), accumulative_counts=accumulative_counts, loss_scale='dynamic', dtype='float16') # learning policy # More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501 param_scheduler = dict( type=CosineAnnealingLR, eta_min=0.0, by_epoch=True, end=max_epochs, convert_to_iter_based=True) # train, val, test setting train_cfg = dict(type=TrainLoop, max_epochs=max_epochs) ####################################################################### # PART 5 Runtime # ####################################################################### # Log the dialogue periodically during the training process, optional custom_hooks = [ dict(type=DatasetInfoHook, tokenizer=tokenizer), dict( type=EvaluateChatHook, tokenizer=tokenizer, every_n_iters=evaluation_freq, evaluation_inputs=evaluation_inputs, system=SYSTEM, prompt_template=prompt_template) ] # configure default hooks default_hooks = dict( # record the time of every iteration. timer=dict(type=IterTimerHook), # print log every 10 iterations. logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10), # enable the parameter scheduler. param_scheduler=dict(type=ParamSchedulerHook), # save checkpoint per `save_steps`. checkpoint=dict( type=CheckpointHook, by_epoch=False, interval=save_steps, max_keep_ckpts=save_total_limit), # set sampler seed in distributed evrionment. sampler_seed=dict(type=DistSamplerSeedHook), ) # configure environment env_cfg = dict( # whether to enable cudnn benchmark cudnn_benchmark=False, # set multi process parameters mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), # set distributed parameters dist_cfg=dict(backend='nccl'), ) # set visualizer visualizer = None # set log level log_level = 'INFO' # load from which checkpoint load_from = None # whether to resume training from the loaded checkpoint resume = False # Defaults to use random seed and disable `deterministic` randomness = dict(seed=None, deterministic=False) # set log processor log_processor = dict(by_epoch=False) ``` ## Quick Start ```bash cd ./examples/demo_data/multi_turn_2 xtuner train config.py ```