File size: 9,333 Bytes
201dd80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# model_handler.py

import gradio as gr
import json
import os
import re
from get_llm_answer import get_model_response, parse_model_response, get_atla_response
from jinja2 import Template

def select_evaluators(criteria_group, df_state, prompt_state, save_prompt_button):
    with gr.Group(visible=True) as model_selection_group:
        select_evaluators_button = gr.Button("Select Evaluators", visible=False)

        # Load the model_data from JSONL
        def load_model_data():
            model_data = {}
            try:
                script_dir = os.path.dirname(__file__)
                file_path = os.path.join(script_dir, "models.jsonl")
                with open(file_path, "r") as f:
                    for line in f:
                        model = json.loads(line)
                        model_data[model["name"]] = {
                            "organization": model["organization"],
                            "license": model["license"],
                            "api_model": model["api_model"],
                        }
            except FileNotFoundError:
                print("Warning: models.jsonl not found")
                return {}
            return model_data


        model_data = load_model_data()
        model_choices = list(model_data.keys())

        # Define dropdowns using model choices
        with gr.Row(visible=False) as evaluator_row:
               judge_a_dropdown = gr.Dropdown(
                   choices=["Selene"], label="Judge A", value="Selene", interactive=False
               )
               judge_b_dropdown = gr.Dropdown(
                   choices=model_choices, label="Judge B", value="Claude 3.5 Sonnet"
               )

        # A Markdown for "Evaluation in progress..." and final heading
        loading_spinner = gr.Markdown("Evaluation in progress...", visible=False)

        # NEW: define a Dataframe to show final evaluation results, like in data_handler
        evaluation_result_df = gr.Dataframe(
            visible=False,
            label="Evaluation Results",
            elem_classes=["truncate_cells"]
        )

        # Define the three-button row AFTER the markdown, 
        # so it appears *below* the "Evaluation Complete" message.
        with gr.Row(visible=False) as evaluation_nav_row:
            back_to_criteria_button = gr.Button("← Back to Criteria", visible=False)
            run_evaluation_button = gr.Button("Run Evaluation", visible=False)
            analyze_results_button = gr.Button("Analyze Results", visible=False)

        # Show evaluator selection UI
        def show_evaluator_selection(current_df):
            # Hide Criteria UI and show Evaluator UI
            updates = {
                criteria_group: gr.update(visible=False),
                save_prompt_button: gr.update(visible=False),
                evaluator_row: gr.update(visible=True),
                evaluation_nav_row: gr.update(visible=True),
                run_evaluation_button: gr.update(visible=True),
                back_to_criteria_button: gr.update(visible=True),
                # By default, hide "Analyze Results" and the result dataframe
                analyze_results_button: gr.update(visible=False),
                evaluation_result_df: gr.update(visible=False),
            }
            if (
                current_df.value is not None
                and hasattr(current_df.value, "attrs")
                and current_df.value.attrs.get("eval_done")
            ):
                # If a previous evaluation was completed, show the heading + dataframe
                updates[loading_spinner] = gr.update(value="### Evaluation Complete", visible=True)
                updates[evaluation_result_df] = gr.update(value=current_df.value, visible=True)
                updates[analyze_results_button] = gr.update(visible=True)

            return updates

        # Note that we pass df_state to show_evaluator_selection
        save_prompt_button.click(
            fn=show_evaluator_selection,
            inputs=[df_state],
            outputs=[
                save_prompt_button,
                criteria_group,
                evaluator_row,
                evaluation_nav_row,
                run_evaluation_button,
                back_to_criteria_button,
                loading_spinner,
                analyze_results_button,
                evaluation_result_df,
            ],
        )

        # Back to Criteria
        def back_to_criteria():
            return {
                save_prompt_button: gr.update(visible=True),
                criteria_group: gr.update(visible=True),
                evaluator_row: gr.update(visible=False),
                evaluation_nav_row: gr.update(visible=False),
                run_evaluation_button: gr.update(visible=False),
                # Hide the "Evaluation Complete" markdown
                loading_spinner: gr.update(visible=False),
                analyze_results_button: gr.update(visible=False),
                evaluation_result_df: gr.update(visible=False),
            }

        back_to_criteria_button.click(
            fn=back_to_criteria,
            inputs=[],
            outputs=[
                save_prompt_button,
                criteria_group,
                evaluator_row,
                evaluation_nav_row,
                run_evaluation_button,
                loading_spinner,
                analyze_results_button,
                evaluation_result_df
            ],
        )

        # Run evaluation
        def run_evaluation(judge_a, judge_b):
            # Show loading spinner
            yield {loading_spinner: gr.update(visible=True)}
            
            # Get template and mappings from prompt state
            template_str = prompt_state.value['template']
            mappings = prompt_state.value['mappings']
            evaluation_criteria = mappings.get('evaluation_criteria')
            
            # Create Jinja template for Judge B only
            template = Template(template_str)
            
            # Submit prompt to chosen models
            for index, row in df_state.value.iterrows():
                # Create a context dictionary for this row
                context = {}
                model_context = None
                expected_output = None
                
                for key, column in mappings.items():
                    if key == 'evaluation_criteria':
                        continue  # Skip as we handle it separately
                    elif column and column != 'None':
                        context[key] = str(row[column])
                        if column == 'model_context':
                            model_context = str(row[column])
                        elif column == 'expected_model_output':
                            expected_output = str(row[column])
                
                # For Judge B, render the template using Jinja
                current_prompt = template.render(**context)
                # For Judge A (Atla Selene), call get_atla_response directly
                response_a = get_atla_response(
                    "atla-selene",
                    model_input=context.get('model_input'),
                    model_output=context.get('model_output'),
                    model_context=model_context,
                    expected_output=expected_output,
                    evaluation_criteria=evaluation_criteria
                )
                response_b = get_model_response(
                    judge_b, 
                    model_data.get(judge_b), 
                    current_prompt
                )
                
                # Parse the responses - handle Atla response differently
                if isinstance(response_a, dict):  # Atla response
                    score_a, critique_a = response_a['score'], response_a['critique']
                else:  # Error case
                    score_a, critique_a = "Error", response_a
                    
                score_b, critique_b = parse_model_response(response_b)
                
                df_state.value.loc[index, 'score_a'] = score_a
                df_state.value.loc[index, 'critique_a'] = critique_a
                df_state.value.loc[index, 'score_b'] = score_b
                df_state.value.loc[index, 'critique_b'] = critique_b
            
            import time
            time.sleep(2)
            
            # Hide loading spinner
            yield {loading_spinner: gr.update(visible=False)}
            
            # Show "Evaluation Complete" heading and the final DataFrame
            yield {
                loading_spinner: gr.update(value="### Evaluation Complete", visible=True),
                evaluation_result_df: gr.update(value=df_state.value, visible=True),
                analyze_results_button: gr.update(visible=True),
            }

            # Store the "already run evaluation" flag safely in .attrs
            if hasattr(df_state.value, "attrs"):
                df_state.value.attrs["eval_done"] = True

        run_evaluation_button.click(
            fn=run_evaluation,
            inputs=[judge_a_dropdown, judge_b_dropdown],
            outputs=[loading_spinner, evaluation_result_df, analyze_results_button],
        )



    return model_selection_group, df_state, analyze_results_button