File size: 3,627 Bytes
201dd80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25afc99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201dd80
 
 
 
 
 
 
25afc99
201dd80
 
25afc99
 
 
 
201dd80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# data_handler.py

import gradio as gr
import pandas as pd
import json
def upload_test_data(df_state):
    with gr.Group() as data_upload_group:
        file_upload = gr.File(
            label="Upload JSON with test data incl. true labels as integers or floats",
            file_types=[".json"],
        )
        import_button = gr.Button("Import Data", visible=False)
        # Show exactly 5 rows, no scrolling
        df_display = gr.Dataframe(
            visible=False,
            elem_classes=["truncate_cells"],
            label="Uploaded Data"
        )
        error_display = gr.Textbox(visible=False)

    def display_file_info(file):
        if file is not None:
            return {
                import_button: gr.update(visible=True),
                error_display: gr.update(visible=False)  # Hide previous errors
            }
        else:
            return {
                import_button: gr.update(visible=False),
                df_display: gr.update(visible=False),
                error_display: gr.update(visible=False)  # Hide previous errors
            }

    def import_data(file):
        if file is not None:
            try:
                loaded_json = json.load(open(file.name))

                # Handle various common JSON structures
                if isinstance(loaded_json, list):
                    # Top-level list
                    df = pd.json_normalize(loaded_json, sep=".")
                elif isinstance(loaded_json, dict):
                    # Dictionary could contain a "data" key or not
                    if "data" in loaded_json and isinstance(loaded_json["data"], list):
                        df = pd.json_normalize(loaded_json["data"], sep=".")
                    else:
                        # Flatten the top-level dictionary
                        df = pd.json_normalize(loaded_json, sep=".")
                else:
                    raise ValueError("Unsupported JSON structure. Please provide a list or object.")

                df_state.value = df

                return {
                    df_display: gr.update(value=df_state.value, visible=True),
                    import_button: gr.update(visible=False),
                    df_state: df_state,
                    error_display: gr.update(visible=False)  # Hide previous errors
                }
            except json.JSONDecodeError:
                return {
                    df_display: gr.update(visible=False),
                    error_display: gr.update(
                        value="**Error:** Invalid JSON file. Please upload a valid JSON file.",
                        visible=True
                    ),
                    import_button: gr.update(visible=True),
                    df_state: None
                }
            except Exception as e:
                return {
                    df_display: gr.update(visible=False),
                    error_display: gr.update(value=f"**Error:** {str(e)}", visible=True),
                    import_button: gr.update(visible=True),
                    df_state: None
                }
        else:
            return {
                df_display: gr.update(visible=False),
                import_button: gr.update(visible=True),
                df_state: None
            }

    file_upload.change(
        fn=display_file_info,
        inputs=file_upload,
        outputs=[import_button, df_display, error_display]
    )
    import_button.click(
        fn=import_data,
        inputs=file_upload,
        outputs=[df_display, import_button, df_state, error_display]
    )

    return data_upload_group, df_state