Spaces:
Runtime error
Runtime error
File size: 8,940 Bytes
201dd80 25afc99 201dd80 25afc99 201dd80 25afc99 201dd80 25afc99 201dd80 25afc99 201dd80 25afc99 3261484 25afc99 201dd80 3261484 201dd80 25afc99 201dd80 25afc99 201dd80 25afc99 201dd80 25afc99 201dd80 25afc99 201dd80 25afc99 201dd80 25afc99 201dd80 25afc99 201dd80 25afc99 201dd80 25afc99 201dd80 25afc99 201dd80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# model_handler.py
import gradio as gr
import json
import os
import re
from get_llm_answer import get_model_response, parse_model_response, get_atla_response
from jinja2 import Template
def select_evaluators(criteria_group, df_state, prompt_state, save_prompt_button):
with gr.Group(visible=True) as model_selection_group:
select_evaluators_button = gr.Button("Select Evaluators", visible=False)
# Load the model_data from JSONL
def load_model_data():
model_data = {}
try:
script_dir = os.path.dirname(__file__)
file_path = os.path.join(script_dir, "models.jsonl")
with open(file_path, "r") as f:
for line in f:
model = json.loads(line)
model_data[model["name"]] = {
"organization": model["organization"],
"license": model["license"],
"api_model": model["api_model"],
}
except FileNotFoundError:
print("Warning: models.jsonl not found")
return {}
return model_data
model_data = load_model_data()
model_choices = list(model_data.keys())
with gr.Row(visible=False) as evaluator_row:
judge_a_dropdown = gr.Dropdown(
choices=["Selene"], label="Judge A", value="Selene", interactive=False
)
judge_b_dropdown = gr.Dropdown(
choices=model_choices, label="Judge B", value="Claude 3.5 Sonnet"
)
loading_spinner = gr.Markdown("Evaluation in progress...", visible=False)
evaluation_result_df = gr.Dataframe(
visible=False,
label="Evaluation Results",
elem_classes=["truncate_cells"]
)
with gr.Row(visible=False) as evaluation_nav_row:
back_to_criteria_button = gr.Button("← Back to Criteria", visible=False)
run_evaluation_button = gr.Button("Run Evaluation", visible=False)
analyze_results_button = gr.Button("Analyze Results", visible=False)
def show_evaluator_selection(current_df):
updates = {
criteria_group: gr.update(visible=False),
save_prompt_button: gr.update(visible=False),
evaluator_row: gr.update(visible=True),
evaluation_nav_row: gr.update(visible=True),
run_evaluation_button: gr.update(visible=True),
back_to_criteria_button: gr.update(visible=True),
analyze_results_button: gr.update(visible=False),
evaluation_result_df: gr.update(visible=False),
}
if (
current_df.value is not None
and hasattr(current_df.value, "attrs")
and current_df.value.attrs.get("eval_done")
):
updates[loading_spinner] = gr.update(value="### Evaluation Complete", visible=True)
updates[evaluation_result_df] = gr.update(value=current_df.value, visible=True)
updates[analyze_results_button] = gr.update(visible=True)
return updates
save_prompt_button.click(
fn=show_evaluator_selection,
inputs=[df_state],
outputs=[
save_prompt_button,
criteria_group,
evaluator_row,
evaluation_nav_row,
run_evaluation_button,
back_to_criteria_button,
loading_spinner,
analyze_results_button,
evaluation_result_df,
],
)
def back_to_criteria():
return {
save_prompt_button: gr.update(visible=True),
criteria_group: gr.update(visible=True),
evaluator_row: gr.update(visible=False),
evaluation_nav_row: gr.update(visible=False),
run_evaluation_button: gr.update(visible=False),
loading_spinner: gr.update(visible=False),
analyze_results_button: gr.update(visible=False),
evaluation_result_df: gr.update(visible=False),
}
back_to_criteria_button.click(
fn=back_to_criteria,
inputs=[],
outputs=[
save_prompt_button,
criteria_group,
evaluator_row,
evaluation_nav_row,
run_evaluation_button,
loading_spinner,
analyze_results_button,
evaluation_result_df
],
)
# Run evaluation
def run_evaluation(judge_a, judge_b):
# 1) Immediately hide old results and disable navigation while running
yield {
loading_spinner: gr.update(value="Evaluation in progress...", visible=True),
evaluation_result_df: gr.update(visible=False),
analyze_results_button: gr.update(visible=False),
run_evaluation_button: gr.update(interactive=False),
back_to_criteria_button: gr.update(interactive=False),
}
# Perform the actual evaluation
template_str = prompt_state.value['template']
mappings = prompt_state.value['mappings']
evaluation_criteria = mappings.get('evaluation_criteria')
template = Template(template_str)
for index, row in df_state.value.iterrows():
context = {}
model_context = None
expected_output = None
for key, column in mappings.items():
if key == 'evaluation_criteria':
continue
elif column and column != 'None':
context[key] = str(row[column])
if column == 'model_context':
model_context = str(row[column])
elif column == 'expected_model_output':
expected_output = str(row[column])
context['evaluation_criteria'] = evaluation_criteria
# Render the template for Judge B
current_prompt = template.render(**context)
print(f"\nDEBUG - Final Prompt sent to Model B:\n{current_prompt}\n")
response_a = get_atla_response(
"atla-selene",
model_input=context.get('model_input'),
model_output=context.get('model_output'),
model_context=model_context,
expected_output=expected_output,
evaluation_criteria=evaluation_criteria
)
response_b = get_model_response(
judge_b,
model_data.get(judge_b),
current_prompt
)
# Parse ATLA response
if isinstance(response_a, dict):
score_a, critique_a = response_a['score'], response_a['critique']
else:
score_a, critique_a = "Error", response_a
score_b, critique_b = parse_model_response(response_b)
df_state.value.loc[index, 'score_a'] = score_a
df_state.value.loc[index, 'critique_a'] = critique_a
df_state.value.loc[index, 'score_b'] = score_b
df_state.value.loc[index, 'critique_b'] = critique_b
import time
time.sleep(2) # simulating time-consuming operations
# 2) Hide spinner
yield {loading_spinner: gr.update(visible=False)}
# 3) Show final results and re-enable buttons
yield {
loading_spinner: gr.update(value="### Evaluation Complete", visible=True),
evaluation_result_df: gr.update(value=df_state.value, visible=True),
analyze_results_button: gr.update(visible=True),
run_evaluation_button: gr.update(interactive=True),
back_to_criteria_button: gr.update(interactive=True),
}
if hasattr(df_state.value, "attrs"):
df_state.value.attrs["eval_done"] = True
# Include back_to_criteria_button & run_evaluation_button in outputs so we can update them
run_evaluation_button.click(
fn=run_evaluation,
inputs=[judge_a_dropdown, judge_b_dropdown],
outputs=[
loading_spinner,
evaluation_result_df,
analyze_results_button,
run_evaluation_button,
back_to_criteria_button,
],
)
return model_selection_group, df_state, analyze_results_button |