File size: 8,940 Bytes
201dd80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25afc99
 
 
 
 
 
 
 
 
 
201dd80
 
 
25afc99
201dd80
25afc99
201dd80
 
 
 
25afc99
201dd80
 
25afc99
201dd80
 
 
 
 
 
25afc99
3261484
 
25afc99
201dd80
3261484
201dd80
 
 
 
 
 
 
 
 
25afc99
 
201dd80
 
25afc99
 
 
201dd80
25afc99
201dd80
25afc99
201dd80
25afc99
201dd80
 
 
 
25afc99
201dd80
25afc99
 
 
201dd80
25afc99
 
201dd80
 
 
 
25afc99
 
201dd80
 
 
 
 
25afc99
201dd80
 
 
25afc99
 
 
 
 
 
 
201dd80
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# model_handler.py

import gradio as gr
import json
import os
import re
from get_llm_answer import get_model_response, parse_model_response, get_atla_response
from jinja2 import Template

def select_evaluators(criteria_group, df_state, prompt_state, save_prompt_button):
    with gr.Group(visible=True) as model_selection_group:
        select_evaluators_button = gr.Button("Select Evaluators", visible=False)

        # Load the model_data from JSONL
        def load_model_data():
            model_data = {}
            try:
                script_dir = os.path.dirname(__file__)
                file_path = os.path.join(script_dir, "models.jsonl")
                with open(file_path, "r") as f:
                    for line in f:
                        model = json.loads(line)
                        model_data[model["name"]] = {
                            "organization": model["organization"],
                            "license": model["license"],
                            "api_model": model["api_model"],
                        }
            except FileNotFoundError:
                print("Warning: models.jsonl not found")
                return {}
            return model_data

        model_data = load_model_data()
        model_choices = list(model_data.keys())

        with gr.Row(visible=False) as evaluator_row:
               judge_a_dropdown = gr.Dropdown(
                   choices=["Selene"], label="Judge A", value="Selene", interactive=False
               )
               judge_b_dropdown = gr.Dropdown(
                   choices=model_choices, label="Judge B", value="Claude 3.5 Sonnet"
               )

        loading_spinner = gr.Markdown("Evaluation in progress...", visible=False)

        evaluation_result_df = gr.Dataframe(
            visible=False,
            label="Evaluation Results",
            elem_classes=["truncate_cells"]
        )

        with gr.Row(visible=False) as evaluation_nav_row:
            back_to_criteria_button = gr.Button("← Back to Criteria", visible=False)
            run_evaluation_button = gr.Button("Run Evaluation", visible=False)
            analyze_results_button = gr.Button("Analyze Results", visible=False)

        def show_evaluator_selection(current_df):
            updates = {
                criteria_group: gr.update(visible=False),
                save_prompt_button: gr.update(visible=False),
                evaluator_row: gr.update(visible=True),
                evaluation_nav_row: gr.update(visible=True),
                run_evaluation_button: gr.update(visible=True),
                back_to_criteria_button: gr.update(visible=True),
                analyze_results_button: gr.update(visible=False),
                evaluation_result_df: gr.update(visible=False),
            }
            if (
                current_df.value is not None
                and hasattr(current_df.value, "attrs")
                and current_df.value.attrs.get("eval_done")
            ):
                updates[loading_spinner] = gr.update(value="### Evaluation Complete", visible=True)
                updates[evaluation_result_df] = gr.update(value=current_df.value, visible=True)
                updates[analyze_results_button] = gr.update(visible=True)

            return updates

        save_prompt_button.click(
            fn=show_evaluator_selection,
            inputs=[df_state],
            outputs=[
                save_prompt_button,
                criteria_group,
                evaluator_row,
                evaluation_nav_row,
                run_evaluation_button,
                back_to_criteria_button,
                loading_spinner,
                analyze_results_button,
                evaluation_result_df,
            ],
        )

        def back_to_criteria():
            return {
                save_prompt_button: gr.update(visible=True),
                criteria_group: gr.update(visible=True),
                evaluator_row: gr.update(visible=False),
                evaluation_nav_row: gr.update(visible=False),
                run_evaluation_button: gr.update(visible=False),
                loading_spinner: gr.update(visible=False),
                analyze_results_button: gr.update(visible=False),
                evaluation_result_df: gr.update(visible=False),
            }

        back_to_criteria_button.click(
            fn=back_to_criteria,
            inputs=[],
            outputs=[
                save_prompt_button,
                criteria_group,
                evaluator_row,
                evaluation_nav_row,
                run_evaluation_button,
                loading_spinner,
                analyze_results_button,
                evaluation_result_df
            ],
        )

        # Run evaluation
        def run_evaluation(judge_a, judge_b):
            # 1) Immediately hide old results and disable navigation while running
            yield {
                loading_spinner: gr.update(value="Evaluation in progress...", visible=True),
                evaluation_result_df: gr.update(visible=False),
                analyze_results_button: gr.update(visible=False),
                run_evaluation_button: gr.update(interactive=False),
                back_to_criteria_button: gr.update(interactive=False),
            }

            # Perform the actual evaluation
            template_str = prompt_state.value['template']
            mappings = prompt_state.value['mappings']
            evaluation_criteria = mappings.get('evaluation_criteria')

            template = Template(template_str)

            for index, row in df_state.value.iterrows():
                context = {}
                model_context = None
                expected_output = None

                for key, column in mappings.items():
                    if key == 'evaluation_criteria':
                        continue
                    elif column and column != 'None':
                        context[key] = str(row[column])
                        if column == 'model_context':
                            model_context = str(row[column])
                        elif column == 'expected_model_output':
                            expected_output = str(row[column])

                context['evaluation_criteria'] = evaluation_criteria

                # Render the template for Judge B
                current_prompt = template.render(**context)
                print(f"\nDEBUG - Final Prompt sent to Model B:\n{current_prompt}\n")
                response_a = get_atla_response(
                    "atla-selene",
                    model_input=context.get('model_input'),
                    model_output=context.get('model_output'),
                    model_context=model_context,
                    expected_output=expected_output,
                    evaluation_criteria=evaluation_criteria
                )
                response_b = get_model_response(
                    judge_b,
                    model_data.get(judge_b),
                    current_prompt
                )

                # Parse ATLA response
                if isinstance(response_a, dict):
                    score_a, critique_a = response_a['score'], response_a['critique']
                else:
                    score_a, critique_a = "Error", response_a

                score_b, critique_b = parse_model_response(response_b)

                df_state.value.loc[index, 'score_a'] = score_a
                df_state.value.loc[index, 'critique_a'] = critique_a
                df_state.value.loc[index, 'score_b'] = score_b
                df_state.value.loc[index, 'critique_b'] = critique_b

            import time
            time.sleep(2)  # simulating time-consuming operations

            # 2) Hide spinner
            yield {loading_spinner: gr.update(visible=False)}

            # 3) Show final results and re-enable buttons
            yield {
                loading_spinner: gr.update(value="### Evaluation Complete", visible=True),
                evaluation_result_df: gr.update(value=df_state.value, visible=True),
                analyze_results_button: gr.update(visible=True),
                run_evaluation_button: gr.update(interactive=True),
                back_to_criteria_button: gr.update(interactive=True),
            }

            if hasattr(df_state.value, "attrs"):
                df_state.value.attrs["eval_done"] = True

        # Include back_to_criteria_button & run_evaluation_button in outputs so we can update them
        run_evaluation_button.click(
            fn=run_evaluation,
            inputs=[judge_a_dropdown, judge_b_dropdown],
            outputs=[
                loading_spinner,
                evaluation_result_df,
                analyze_results_button,
                run_evaluation_button,
                back_to_criteria_button,
            ],
        )

    return model_selection_group, df_state, analyze_results_button