Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,966 Bytes
35e2073 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
import numpy as np
import utils.utils_poses.ATE.transformations as tfs
import utils.utils_poses.ATE.align_trajectory as align
def _getIndices(n_aligned, total_n):
if n_aligned == -1:
idxs = np.arange(0, total_n)
else:
assert n_aligned <= total_n and n_aligned >= 1
idxs = np.arange(0, n_aligned)
return idxs
def alignPositionYawSingle(p_es, p_gt, q_es, q_gt):
'''
calcualte the 4DOF transformation: yaw R and translation t so that:
gt = R * est + t
'''
p_es_0, q_es_0 = p_es[0, :], q_es[0, :]
p_gt_0, q_gt_0 = p_gt[0, :], q_gt[0, :]
g_rot = tfs.quaternion_matrix(q_gt_0)
g_rot = g_rot[0:3, 0:3]
est_rot = tfs.quaternion_matrix(q_es_0)
est_rot = est_rot[0:3, 0:3]
C_R = np.dot(est_rot, g_rot.transpose())
theta = align.get_best_yaw(C_R)
R = align.rot_z(theta)
t = p_gt_0 - np.dot(R, p_es_0)
return R, t
def alignPositionYaw(p_es, p_gt, q_es, q_gt, n_aligned=1):
if n_aligned == 1:
R, t = alignPositionYawSingle(p_es, p_gt, q_es, q_gt)
return R, t
else:
idxs = _getIndices(n_aligned, p_es.shape[0])
est_pos = p_es[idxs, 0:3]
gt_pos = p_gt[idxs, 0:3]
_, R, t = align.align_umeyama(gt_pos, est_pos, known_scale=True,
yaw_only=True) # note the order
t = np.array(t)
t = t.reshape((3, ))
R = np.array(R)
return R, t
# align by a SE3 transformation
def alignSE3Single(p_es, p_gt, q_es, q_gt):
'''
Calculate SE3 transformation R and t so that:
gt = R * est + t
Using only the first poses of est and gt
'''
p_es_0, q_es_0 = p_es[0, :], q_es[0, :]
p_gt_0, q_gt_0 = p_gt[0, :], q_gt[0, :]
g_rot = tfs.quaternion_matrix(q_gt_0)
g_rot = g_rot[0:3, 0:3]
est_rot = tfs.quaternion_matrix(q_es_0)
est_rot = est_rot[0:3, 0:3]
R = np.dot(g_rot, np.transpose(est_rot))
t = p_gt_0 - np.dot(R, p_es_0)
return R, t
def alignSE3(p_es, p_gt, q_es, q_gt, n_aligned=-1):
'''
Calculate SE3 transformation R and t so that:
gt = R * est + t
'''
if n_aligned == 1:
R, t = alignSE3Single(p_es, p_gt, q_es, q_gt)
return R, t
else:
idxs = _getIndices(n_aligned, p_es.shape[0])
est_pos = p_es[idxs, 0:3]
gt_pos = p_gt[idxs, 0:3]
s, R, t = align.align_umeyama(gt_pos, est_pos,
known_scale=True) # note the order
t = np.array(t)
t = t.reshape((3, ))
R = np.array(R)
return R, t
# align by similarity transformation
def alignSIM3(p_es, p_gt, q_es, q_gt, n_aligned=-1):
'''
calculate s, R, t so that:
gt = R * s * est + t
'''
idxs = _getIndices(n_aligned, p_es.shape[0])
est_pos = p_es[idxs, 0:3]
gt_pos = p_gt[idxs, 0:3]
s, R, t = align.align_umeyama(gt_pos, est_pos) # note the order
return s, R, t
# a general interface
def alignTrajectory(p_es, p_gt, q_es, q_gt, method, n_aligned=-1):
'''
calculate s, R, t so that:
gt = R * s * est + t
method can be: sim3, se3, posyaw, none;
n_aligned: -1 means using all the frames
'''
assert p_es.shape[1] == 3
assert p_gt.shape[1] == 3
assert q_es.shape[1] == 4
assert q_gt.shape[1] == 4
s = 1
R = None
t = None
if method == 'sim3':
assert n_aligned >= 2 or n_aligned == -1, "sim3 uses at least 2 frames"
s, R, t = alignSIM3(p_es, p_gt, q_es, q_gt, n_aligned)
elif method == 'se3':
R, t = alignSE3(p_es, p_gt, q_es, q_gt, n_aligned)
elif method == 'posyaw':
R, t = alignPositionYaw(p_es, p_gt, q_es, q_gt, n_aligned)
elif method == 'none':
R = np.identity(3)
t = np.zeros((3, ))
else:
assert False, 'unknown alignment method'
return s, R, t
if __name__ == '__main__':
pass
|