File size: 9,755 Bytes
35e2073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
import matplotlib
import matplotlib.pyplot as plt
import copy
from evo.core.trajectory import PosePath3D, PoseTrajectory3D
from evo.main_ape import ape
from evo.tools import plot
from evo.core import sync
from evo.tools import file_interface
from evo.core import metrics
import evo
import torch
import numpy as np
from scipy.spatial.transform import Slerp
from scipy.spatial.transform import Rotation as R
import scipy.interpolate as si


def interp_poses(c2ws, N_views):
    N_inputs = c2ws.shape[0]
    trans = c2ws[:, :3, 3:].permute(2, 1, 0)
    rots = c2ws[:, :3, :3]
    render_poses = []
    rots = R.from_matrix(rots)
    slerp = Slerp(np.linspace(0, 1, N_inputs), rots)
    interp_rots = torch.tensor(
        slerp(np.linspace(0, 1, N_views)).as_matrix().astype(np.float32))
    interp_trans = torch.nn.functional.interpolate(
        trans, size=N_views, mode='linear').permute(2, 1, 0)
    render_poses = torch.cat([interp_rots, interp_trans], dim=2)
    render_poses = convert3x4_4x4(render_poses)
    return render_poses


def interp_poses_bspline(c2ws, N_novel_imgs, input_times, degree):
    target_trans = torch.tensor(scipy_bspline(
        c2ws[:, :3, 3], n=N_novel_imgs, degree=degree, periodic=False).astype(np.float32)).unsqueeze(2)
    rots = R.from_matrix(c2ws[:, :3, :3])
    slerp = Slerp(input_times, rots)
    target_times = np.linspace(input_times[0], input_times[-1], N_novel_imgs)
    target_rots = torch.tensor(
        slerp(target_times).as_matrix().astype(np.float32))
    target_poses = torch.cat([target_rots, target_trans], dim=2)
    target_poses = convert3x4_4x4(target_poses)
    return target_poses


def poses_avg(poses):

    hwf = poses[0, :3, -1:]

    center = poses[:, :3, 3].mean(0)
    vec2 = normalize(poses[:, :3, 2].sum(0))
    up = poses[:, :3, 1].sum(0)
    c2w = np.concatenate([viewmatrix(vec2, up, center), hwf], 1)

    return c2w


def normalize(v):
    """Normalize a vector."""
    return v / np.linalg.norm(v)


def viewmatrix(z, up, pos):
    vec2 = normalize(z)
    vec1_avg = up
    vec0 = normalize(np.cross(vec1_avg, vec2))
    vec1 = normalize(np.cross(vec2, vec0))
    m = np.stack([vec0, vec1, vec2, pos], 1)
    return m


def render_path_spiral(c2w, up, rads, focal, zdelta, zrate, rots, N):
    render_poses = []
    rads = np.array(list(rads) + [1.])
    hwf = c2w[:, 4:5]

    for theta in np.linspace(0., 2. * np.pi * rots, N+1)[:-1]:
        # c = np.dot(c2w[:3,:4], np.array([0.7*np.cos(theta) , -0.3*np.sin(theta) , -np.sin(theta*zrate) *0.1, 1.]) * rads)
        # c = np.dot(c2w[:3,:4], np.array([0.3*np.cos(theta) , -0.3*np.sin(theta) , -np.sin(theta*zrate) *0.01, 1.]) * rads)
        c = np.dot(c2w[:3, :4], np.array(
            [0.2*np.cos(theta), -0.2*np.sin(theta), -np.sin(theta*zrate) * 0.1, 1.]) * rads)
        z = normalize(c - np.dot(c2w[:3, :4], np.array([0, 0, -focal, 1.])))
        render_poses.append(np.concatenate([viewmatrix(z, up, c), hwf], 1))
    return render_poses


def scipy_bspline(cv, n=100, degree=3, periodic=False):
    """ Calculate n samples on a bspline

        cv :      Array ov control vertices
        n  :      Number of samples to return
        degree:   Curve degree
        periodic: True - Curve is closed
    """
    cv = np.asarray(cv)
    count = cv.shape[0]

    # Closed curve
    if periodic:
        kv = np.arange(-degree, count+degree+1)
        factor, fraction = divmod(count+degree+1, count)
        cv = np.roll(np.concatenate(
            (cv,) * factor + (cv[:fraction],)), -1, axis=0)
        degree = np.clip(degree, 1, degree)

    # Opened curve
    else:
        degree = np.clip(degree, 1, count-1)
        kv = np.clip(np.arange(count+degree+1)-degree, 0, count-degree)

    # Return samples
    max_param = count - (degree * (1-periodic))
    spl = si.BSpline(kv, cv, degree)
    return spl(np.linspace(0, max_param, n))


def generate_spiral_nerf(learned_poses, bds, N_novel_views, hwf):
    learned_poses_ = np.concatenate((learned_poses[:, :3, :4].detach(
    ).cpu().numpy(), hwf[:len(learned_poses)]), axis=-1)
    c2w = poses_avg(learned_poses_)
    print('recentered', c2w.shape)
    # Get spiral
    # Get average pose
    up = normalize(learned_poses_[:, :3, 1].sum(0))
    # Find a reasonable "focus depth" for this dataset

    close_depth, inf_depth = bds.min()*.9, bds.max()*5.
    dt = .75
    mean_dz = 1./(((1.-dt)/close_depth + dt/inf_depth))
    focal = mean_dz

    # Get radii for spiral path
    shrink_factor = .8
    zdelta = close_depth * .2
    tt = learned_poses_[:, :3, 3]  # ptstocam(poses[:3,3,:].T, c2w).T
    rads = np.percentile(np.abs(tt), 90, 0)
    c2w_path = c2w
    N_rots = 2
    c2ws = render_path_spiral(
        c2w_path, up, rads, focal, zdelta, zrate=.5, rots=N_rots, N=N_novel_views)
    c2ws = torch.tensor(np.stack(c2ws).astype(np.float32))
    c2ws = c2ws[:, :3, :4]
    c2ws = convert3x4_4x4(c2ws)
    return c2ws


def convert3x4_4x4(input):
    """
    :param input:  (N, 3, 4) or (3, 4) torch or np
    :return:       (N, 4, 4) or (4, 4) torch or np
    """
    if torch.is_tensor(input):
        if len(input.shape) == 3:
            output = torch.cat([input, torch.zeros_like(
                input[:, 0:1])], dim=1)  # (N, 4, 4)
            output[:, 3, 3] = 1.0
        else:
            output = torch.cat([input, torch.tensor(
                [[0, 0, 0, 1]], dtype=input.dtype, device=input.device)], dim=0)  # (4, 4)
    else:
        if len(input.shape) == 3:
            output = np.concatenate(
                [input, np.zeros_like(input[:, 0:1])], axis=1)  # (N, 4, 4)
            output[:, 3, 3] = 1.0
        else:
            output = np.concatenate(
                [input, np.array([[0, 0, 0, 1]], dtype=input.dtype)], axis=0)  # (4, 4)
            output[3, 3] = 1.0
    return output


plt.rc('legend', fontsize=20)  # using a named size


def plot_pose(ref_poses, est_poses, output_path, args, vid=False):
    ref_poses = [pose for pose in ref_poses]
    if isinstance(est_poses, dict):
        est_poses = [pose for k, pose in est_poses.items()]
    else:
        est_poses = [pose for pose in est_poses]
    traj_ref = PosePath3D(poses_se3=ref_poses)
    traj_est = PosePath3D(poses_se3=est_poses)
    traj_est_aligned = copy.deepcopy(traj_est)
    traj_est_aligned.align(traj_ref, correct_scale=True,
                           correct_only_scale=False)
    if vid:
        for p_idx in range(len(ref_poses)):
            fig = plt.figure()
            current_est_aligned = traj_est_aligned.poses_se3[:p_idx+1]
            current_ref = traj_ref.poses_se3[:p_idx+1]
            current_est_aligned = PosePath3D(poses_se3=current_est_aligned)
            current_ref = PosePath3D(poses_se3=current_ref)
            traj_by_label = {
                # "estimate (not aligned)": traj_est,
                "Ours (aligned)": current_est_aligned,
                "Ground-truth": current_ref
            }
            plot_mode = plot.PlotMode.xyz
            # ax = plot.prepare_axis(fig, plot_mode, 111)
            ax = fig.add_subplot(111, projection="3d")
            ax.xaxis.set_tick_params(labelbottom=False)
            ax.yaxis.set_tick_params(labelleft=False)
            ax.zaxis.set_tick_params(labelleft=False)
            colors = ['r', 'b']
            styles = ['-', '--']

            for idx, (label, traj) in enumerate(traj_by_label.items()):
                plot.traj(ax, plot_mode, traj,
                          styles[idx], colors[idx], label)
                # break
            # plot.trajectories(fig, traj_by_label, plot.PlotMode.xyz)
            ax.view_init(elev=10., azim=45)
            plt.tight_layout()
            os.makedirs(os.path.join(os.path.dirname(
                output_path), 'pose_vid'), exist_ok=True)
            pose_vis_path = os.path.join(os.path.dirname(
                output_path), 'pose_vid', 'pose_vis_{:03d}.png'.format(p_idx))
            print(pose_vis_path)
            fig.savefig(pose_vis_path)

    # else:

    fig = plt.figure()
    fig.patch.set_facecolor('white')                    # 把背景设置为纯白色
    traj_by_label = {
        # "estimate (not aligned)": traj_est,
    
        "Ours (aligned)": traj_est_aligned,
        # "NoPe-NeRF (aligned)": traj_est_aligned,
        # "CF-3DGS (aligned)": traj_est_aligned,
        # "NeRFmm (aligned)": traj_est_aligned,
        # args.method + " (aligned)": traj_est_aligned,
        "COLMAP (GT)": traj_ref
        # "Ground-truth": traj_ref
    }
    plot_mode = plot.PlotMode.xyz
    # ax = plot.prepare_axis(fig, plot_mode, 111)
    ax = fig.add_subplot(111, projection="3d")
    ax.set_facecolor('white')                           # 把子图设置为纯白色
    ax.xaxis.set_tick_params(labelbottom=True)
    ax.yaxis.set_tick_params(labelleft=True)
    ax.zaxis.set_tick_params(labelleft=True)
    colors = ['#2c9e38', '#d12920']     # 
    # colors = ['#2c9e38', '#a72126']     # 

    # colors = ['r', 'b']
    styles = ['-', '--']

    for idx, (label, traj) in enumerate(traj_by_label.items()):
        plot.traj(ax, plot_mode, traj,
                  styles[idx], colors[idx], label)
        # break
    # plot.trajectories(fig, traj_by_label, plot.PlotMode.xyz)
    ax.view_init(elev=30., azim=45)
    # ax.view_init(elev=10., azim=45)
    plt.tight_layout()
    pose_vis_path = output_path / f'pose_vis.png'
    # pose_vis_path = os.path.join(os.path.dirname(output_path), f'pose_vis_{args.method}_{args.scene}.png')
    fig.savefig(pose_vis_path)

    # path_parts = args.pose_path.split('/')
    # tmp_vis_path = '/'.join(path_parts[:-1]) + '/all_vis'
    # tmp_vis_path2 = os.path.join(tmp_vis_path, f'pose_vis_{args.method}_{args.scene}.png')
    # fig.savefig(tmp_vis_path2)