Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,755 Bytes
35e2073 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import os
import matplotlib
import matplotlib.pyplot as plt
import copy
from evo.core.trajectory import PosePath3D, PoseTrajectory3D
from evo.main_ape import ape
from evo.tools import plot
from evo.core import sync
from evo.tools import file_interface
from evo.core import metrics
import evo
import torch
import numpy as np
from scipy.spatial.transform import Slerp
from scipy.spatial.transform import Rotation as R
import scipy.interpolate as si
def interp_poses(c2ws, N_views):
N_inputs = c2ws.shape[0]
trans = c2ws[:, :3, 3:].permute(2, 1, 0)
rots = c2ws[:, :3, :3]
render_poses = []
rots = R.from_matrix(rots)
slerp = Slerp(np.linspace(0, 1, N_inputs), rots)
interp_rots = torch.tensor(
slerp(np.linspace(0, 1, N_views)).as_matrix().astype(np.float32))
interp_trans = torch.nn.functional.interpolate(
trans, size=N_views, mode='linear').permute(2, 1, 0)
render_poses = torch.cat([interp_rots, interp_trans], dim=2)
render_poses = convert3x4_4x4(render_poses)
return render_poses
def interp_poses_bspline(c2ws, N_novel_imgs, input_times, degree):
target_trans = torch.tensor(scipy_bspline(
c2ws[:, :3, 3], n=N_novel_imgs, degree=degree, periodic=False).astype(np.float32)).unsqueeze(2)
rots = R.from_matrix(c2ws[:, :3, :3])
slerp = Slerp(input_times, rots)
target_times = np.linspace(input_times[0], input_times[-1], N_novel_imgs)
target_rots = torch.tensor(
slerp(target_times).as_matrix().astype(np.float32))
target_poses = torch.cat([target_rots, target_trans], dim=2)
target_poses = convert3x4_4x4(target_poses)
return target_poses
def poses_avg(poses):
hwf = poses[0, :3, -1:]
center = poses[:, :3, 3].mean(0)
vec2 = normalize(poses[:, :3, 2].sum(0))
up = poses[:, :3, 1].sum(0)
c2w = np.concatenate([viewmatrix(vec2, up, center), hwf], 1)
return c2w
def normalize(v):
"""Normalize a vector."""
return v / np.linalg.norm(v)
def viewmatrix(z, up, pos):
vec2 = normalize(z)
vec1_avg = up
vec0 = normalize(np.cross(vec1_avg, vec2))
vec1 = normalize(np.cross(vec2, vec0))
m = np.stack([vec0, vec1, vec2, pos], 1)
return m
def render_path_spiral(c2w, up, rads, focal, zdelta, zrate, rots, N):
render_poses = []
rads = np.array(list(rads) + [1.])
hwf = c2w[:, 4:5]
for theta in np.linspace(0., 2. * np.pi * rots, N+1)[:-1]:
# c = np.dot(c2w[:3,:4], np.array([0.7*np.cos(theta) , -0.3*np.sin(theta) , -np.sin(theta*zrate) *0.1, 1.]) * rads)
# c = np.dot(c2w[:3,:4], np.array([0.3*np.cos(theta) , -0.3*np.sin(theta) , -np.sin(theta*zrate) *0.01, 1.]) * rads)
c = np.dot(c2w[:3, :4], np.array(
[0.2*np.cos(theta), -0.2*np.sin(theta), -np.sin(theta*zrate) * 0.1, 1.]) * rads)
z = normalize(c - np.dot(c2w[:3, :4], np.array([0, 0, -focal, 1.])))
render_poses.append(np.concatenate([viewmatrix(z, up, c), hwf], 1))
return render_poses
def scipy_bspline(cv, n=100, degree=3, periodic=False):
""" Calculate n samples on a bspline
cv : Array ov control vertices
n : Number of samples to return
degree: Curve degree
periodic: True - Curve is closed
"""
cv = np.asarray(cv)
count = cv.shape[0]
# Closed curve
if periodic:
kv = np.arange(-degree, count+degree+1)
factor, fraction = divmod(count+degree+1, count)
cv = np.roll(np.concatenate(
(cv,) * factor + (cv[:fraction],)), -1, axis=0)
degree = np.clip(degree, 1, degree)
# Opened curve
else:
degree = np.clip(degree, 1, count-1)
kv = np.clip(np.arange(count+degree+1)-degree, 0, count-degree)
# Return samples
max_param = count - (degree * (1-periodic))
spl = si.BSpline(kv, cv, degree)
return spl(np.linspace(0, max_param, n))
def generate_spiral_nerf(learned_poses, bds, N_novel_views, hwf):
learned_poses_ = np.concatenate((learned_poses[:, :3, :4].detach(
).cpu().numpy(), hwf[:len(learned_poses)]), axis=-1)
c2w = poses_avg(learned_poses_)
print('recentered', c2w.shape)
# Get spiral
# Get average pose
up = normalize(learned_poses_[:, :3, 1].sum(0))
# Find a reasonable "focus depth" for this dataset
close_depth, inf_depth = bds.min()*.9, bds.max()*5.
dt = .75
mean_dz = 1./(((1.-dt)/close_depth + dt/inf_depth))
focal = mean_dz
# Get radii for spiral path
shrink_factor = .8
zdelta = close_depth * .2
tt = learned_poses_[:, :3, 3] # ptstocam(poses[:3,3,:].T, c2w).T
rads = np.percentile(np.abs(tt), 90, 0)
c2w_path = c2w
N_rots = 2
c2ws = render_path_spiral(
c2w_path, up, rads, focal, zdelta, zrate=.5, rots=N_rots, N=N_novel_views)
c2ws = torch.tensor(np.stack(c2ws).astype(np.float32))
c2ws = c2ws[:, :3, :4]
c2ws = convert3x4_4x4(c2ws)
return c2ws
def convert3x4_4x4(input):
"""
:param input: (N, 3, 4) or (3, 4) torch or np
:return: (N, 4, 4) or (4, 4) torch or np
"""
if torch.is_tensor(input):
if len(input.shape) == 3:
output = torch.cat([input, torch.zeros_like(
input[:, 0:1])], dim=1) # (N, 4, 4)
output[:, 3, 3] = 1.0
else:
output = torch.cat([input, torch.tensor(
[[0, 0, 0, 1]], dtype=input.dtype, device=input.device)], dim=0) # (4, 4)
else:
if len(input.shape) == 3:
output = np.concatenate(
[input, np.zeros_like(input[:, 0:1])], axis=1) # (N, 4, 4)
output[:, 3, 3] = 1.0
else:
output = np.concatenate(
[input, np.array([[0, 0, 0, 1]], dtype=input.dtype)], axis=0) # (4, 4)
output[3, 3] = 1.0
return output
plt.rc('legend', fontsize=20) # using a named size
def plot_pose(ref_poses, est_poses, output_path, args, vid=False):
ref_poses = [pose for pose in ref_poses]
if isinstance(est_poses, dict):
est_poses = [pose for k, pose in est_poses.items()]
else:
est_poses = [pose for pose in est_poses]
traj_ref = PosePath3D(poses_se3=ref_poses)
traj_est = PosePath3D(poses_se3=est_poses)
traj_est_aligned = copy.deepcopy(traj_est)
traj_est_aligned.align(traj_ref, correct_scale=True,
correct_only_scale=False)
if vid:
for p_idx in range(len(ref_poses)):
fig = plt.figure()
current_est_aligned = traj_est_aligned.poses_se3[:p_idx+1]
current_ref = traj_ref.poses_se3[:p_idx+1]
current_est_aligned = PosePath3D(poses_se3=current_est_aligned)
current_ref = PosePath3D(poses_se3=current_ref)
traj_by_label = {
# "estimate (not aligned)": traj_est,
"Ours (aligned)": current_est_aligned,
"Ground-truth": current_ref
}
plot_mode = plot.PlotMode.xyz
# ax = plot.prepare_axis(fig, plot_mode, 111)
ax = fig.add_subplot(111, projection="3d")
ax.xaxis.set_tick_params(labelbottom=False)
ax.yaxis.set_tick_params(labelleft=False)
ax.zaxis.set_tick_params(labelleft=False)
colors = ['r', 'b']
styles = ['-', '--']
for idx, (label, traj) in enumerate(traj_by_label.items()):
plot.traj(ax, plot_mode, traj,
styles[idx], colors[idx], label)
# break
# plot.trajectories(fig, traj_by_label, plot.PlotMode.xyz)
ax.view_init(elev=10., azim=45)
plt.tight_layout()
os.makedirs(os.path.join(os.path.dirname(
output_path), 'pose_vid'), exist_ok=True)
pose_vis_path = os.path.join(os.path.dirname(
output_path), 'pose_vid', 'pose_vis_{:03d}.png'.format(p_idx))
print(pose_vis_path)
fig.savefig(pose_vis_path)
# else:
fig = plt.figure()
fig.patch.set_facecolor('white') # 把背景设置为纯白色
traj_by_label = {
# "estimate (not aligned)": traj_est,
"Ours (aligned)": traj_est_aligned,
# "NoPe-NeRF (aligned)": traj_est_aligned,
# "CF-3DGS (aligned)": traj_est_aligned,
# "NeRFmm (aligned)": traj_est_aligned,
# args.method + " (aligned)": traj_est_aligned,
"COLMAP (GT)": traj_ref
# "Ground-truth": traj_ref
}
plot_mode = plot.PlotMode.xyz
# ax = plot.prepare_axis(fig, plot_mode, 111)
ax = fig.add_subplot(111, projection="3d")
ax.set_facecolor('white') # 把子图设置为纯白色
ax.xaxis.set_tick_params(labelbottom=True)
ax.yaxis.set_tick_params(labelleft=True)
ax.zaxis.set_tick_params(labelleft=True)
colors = ['#2c9e38', '#d12920'] #
# colors = ['#2c9e38', '#a72126'] #
# colors = ['r', 'b']
styles = ['-', '--']
for idx, (label, traj) in enumerate(traj_by_label.items()):
plot.traj(ax, plot_mode, traj,
styles[idx], colors[idx], label)
# break
# plot.trajectories(fig, traj_by_label, plot.PlotMode.xyz)
ax.view_init(elev=30., azim=45)
# ax.view_init(elev=10., azim=45)
plt.tight_layout()
pose_vis_path = output_path / f'pose_vis.png'
# pose_vis_path = os.path.join(os.path.dirname(output_path), f'pose_vis_{args.method}_{args.scene}.png')
fig.savefig(pose_vis_path)
# path_parts = args.pose_path.split('/')
# tmp_vis_path = '/'.join(path_parts[:-1]) + '/all_vis'
# tmp_vis_path2 = os.path.join(tmp_vis_path, f'pose_vis_{args.method}_{args.scene}.png')
# fig.savefig(tmp_vis_path2)
|