Spaces:
Runtime error
Runtime error
Commit
·
59122b6
1
Parent(s):
1a9597f
Upload folder using huggingface_hub
Browse files- README.md +3 -9
- __pycache__/pdfparser.cpython-310.pyc +0 -0
- __pycache__/ui.cpython-310.pyc +0 -0
- pdfparser.py +142 -0
- requirements.txt +9 -0
- ui.py +61 -0
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: blue
|
5 |
-
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: demo-pdfchat
|
3 |
+
app_file: ui.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
+
sdk_version: 3.35.2
|
|
|
|
|
6 |
---
|
|
|
|
__pycache__/pdfparser.cpython-310.pyc
ADDED
Binary file (3.44 kB). View file
|
|
__pycache__/ui.cpython-310.pyc
ADDED
Binary file (1.88 kB). View file
|
|
pdfparser.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
|
4 |
+
import boto3
|
5 |
+
from langchain.document_loaders import PyPDFium2Loader
|
6 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain.vectorstores import FAISS
|
9 |
+
from pdf2image import convert_from_path
|
10 |
+
from sllim import chat
|
11 |
+
|
12 |
+
# Standard Textract client setup
|
13 |
+
textract_client = boto3.client("textract")
|
14 |
+
template = """I will give you a couple of paragraphs from a PDF document along with a question about the document. You will provide an answer as accurately as possible and provide citations for why that answer is correct.
|
15 |
+
DOCUMENTS:
|
16 |
+
{docs}
|
17 |
+
---
|
18 |
+
QUERY:
|
19 |
+
{query}
|
20 |
+
"""
|
21 |
+
embeddings = OpenAIEmbeddings()
|
22 |
+
|
23 |
+
|
24 |
+
def convert_pdf_to_text(pdf_file_path: str):
|
25 |
+
# Convert the PDF to an in-memory image format
|
26 |
+
images = convert_from_path(pdf_file_path)
|
27 |
+
|
28 |
+
docs = []
|
29 |
+
for image in images:
|
30 |
+
# Convert the image into byte stream
|
31 |
+
with io.BytesIO() as image_stream:
|
32 |
+
image.save(image_stream, "JPEG")
|
33 |
+
image_bytes = image_stream.getvalue()
|
34 |
+
|
35 |
+
# Use Textract to detect text in the local image
|
36 |
+
response = textract_client.detect_document_text(Document={"Bytes": image_bytes})
|
37 |
+
|
38 |
+
text = ""
|
39 |
+
# Print the detected text blocks
|
40 |
+
for item in response["Blocks"]:
|
41 |
+
if item["BlockType"] == "LINE":
|
42 |
+
text += item["Text"] + "\n"
|
43 |
+
docs.append(text)
|
44 |
+
return docs
|
45 |
+
|
46 |
+
|
47 |
+
def process_file(file_path):
|
48 |
+
index_path = get_index_name(file_path)
|
49 |
+
if os.path.exists(index_path):
|
50 |
+
return
|
51 |
+
|
52 |
+
loader = PyPDFium2Loader(file_path)
|
53 |
+
data = loader.load()
|
54 |
+
|
55 |
+
# Parse text into paragraphs
|
56 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
57 |
+
chunk_size=1000,
|
58 |
+
chunk_overlap=50,
|
59 |
+
length_function=len,
|
60 |
+
)
|
61 |
+
docs = text_splitter.split_documents(data)
|
62 |
+
if len(docs) == 0:
|
63 |
+
data = convert_pdf_to_text(file_path)
|
64 |
+
docs = text_splitter.create_documents(data)
|
65 |
+
|
66 |
+
# Embed paragraphs
|
67 |
+
db = FAISS.from_documents(docs, embeddings)
|
68 |
+
db.save_local(index_path)
|
69 |
+
|
70 |
+
|
71 |
+
def get_index_name(file_path):
|
72 |
+
basename = os.path.splitext(os.path.basename(file_path))[0]
|
73 |
+
index_path = basename + "_faiss_index"
|
74 |
+
return index_path
|
75 |
+
|
76 |
+
|
77 |
+
def ask_question_all(history):
|
78 |
+
indices = []
|
79 |
+
docs = []
|
80 |
+
|
81 |
+
messages = []
|
82 |
+
for user, bot in history:
|
83 |
+
if not isinstance(user, str):
|
84 |
+
indices.append(get_index_name(user[0]))
|
85 |
+
elif bot:
|
86 |
+
messages.append({"role": "user", "content": user})
|
87 |
+
messages.append({"role": "assistant", "content": bot})
|
88 |
+
else:
|
89 |
+
# Handle new message
|
90 |
+
for index_path in indices:
|
91 |
+
db = FAISS.load_local(index_path, embeddings)
|
92 |
+
docs.extend(db.similarity_search(user))
|
93 |
+
messages.append(
|
94 |
+
{
|
95 |
+
"role": "user",
|
96 |
+
"content": template.format(
|
97 |
+
query=user, docs="\n".join(map(lambda x: x.page_content, docs))
|
98 |
+
),
|
99 |
+
}
|
100 |
+
)
|
101 |
+
|
102 |
+
# send similar paragraphs with question to model
|
103 |
+
return chat(messages, model="gpt-3.5-turbo")
|
104 |
+
|
105 |
+
|
106 |
+
def ask_question(query, upload_file, history=None):
|
107 |
+
file_path = upload_file.name
|
108 |
+
|
109 |
+
index_path = get_index_name(file_path)
|
110 |
+
if not os.path.exists(index_path):
|
111 |
+
loader = PyPDFium2Loader(file_path)
|
112 |
+
data = loader.load()
|
113 |
+
|
114 |
+
# Parse text into paragraphs
|
115 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
116 |
+
chunk_size=1000,
|
117 |
+
chunk_overlap=50,
|
118 |
+
length_function=len,
|
119 |
+
)
|
120 |
+
docs = text_splitter.split_documents(data)
|
121 |
+
if len(docs) == 0:
|
122 |
+
data = convert_pdf_to_text(file_path)
|
123 |
+
docs = text_splitter.create_documents(data)
|
124 |
+
|
125 |
+
# Embed paragraphs
|
126 |
+
db = FAISS.from_documents(docs, embeddings)
|
127 |
+
db.save_local(index_path)
|
128 |
+
else:
|
129 |
+
db = FAISS.load_local(index_path, embeddings)
|
130 |
+
|
131 |
+
docs = db.similarity_search(query)
|
132 |
+
messages = [
|
133 |
+
{
|
134 |
+
"role": "user",
|
135 |
+
"content": template.format(
|
136 |
+
query=query, docs="\n".join(map(lambda x: x.page_content, docs))
|
137 |
+
),
|
138 |
+
}
|
139 |
+
]
|
140 |
+
|
141 |
+
# send similar paragraphs with question to model
|
142 |
+
return chat(messages, model="gpt-3.5-turbo")
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sllim
|
2 |
+
openai
|
3 |
+
faiss-cpu
|
4 |
+
tiktoken
|
5 |
+
pdf2image
|
6 |
+
pypdfium2
|
7 |
+
gradio
|
8 |
+
boto3
|
9 |
+
langchain
|
ui.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from pdfparser import ask_question_all, process_file
|
6 |
+
|
7 |
+
PASSWORD = os.environ["OPEN_PASSWORD"]
|
8 |
+
|
9 |
+
|
10 |
+
def add_text(history, text):
|
11 |
+
history = history + [(text, None)]
|
12 |
+
return history, gr.update(value="", interactive=False)
|
13 |
+
|
14 |
+
|
15 |
+
def add_file(history, file):
|
16 |
+
history = history + [((file.name,), None)]
|
17 |
+
return history
|
18 |
+
|
19 |
+
|
20 |
+
def bot(history):
|
21 |
+
if history[0][0] == PASSWORD:
|
22 |
+
if len(history) == 1:
|
23 |
+
response = "Access granted."
|
24 |
+
else:
|
25 |
+
response = ask_question_all(history[1:])
|
26 |
+
else:
|
27 |
+
response = "Wrong password"
|
28 |
+
history[-1][1] = response
|
29 |
+
return history
|
30 |
+
|
31 |
+
|
32 |
+
def bot_upload(history):
|
33 |
+
if history[0][0] == PASSWORD:
|
34 |
+
process_file(history[-1][0][0])
|
35 |
+
history[-1][1] = "Ready."
|
36 |
+
else:
|
37 |
+
history[-1][1] = "Wrong password"
|
38 |
+
return history
|
39 |
+
|
40 |
+
|
41 |
+
with gr.Blocks() as demo:
|
42 |
+
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=450)
|
43 |
+
|
44 |
+
with gr.Row():
|
45 |
+
with gr.Column(scale=0.85):
|
46 |
+
txt = gr.Textbox(
|
47 |
+
show_label=False,
|
48 |
+
placeholder="First upload a pdf file, then query it",
|
49 |
+
).style(container=False)
|
50 |
+
with gr.Column(scale=0.15, min_width=0):
|
51 |
+
btn = gr.UploadButton("📁", file_types=["pdf"])
|
52 |
+
|
53 |
+
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
|
54 |
+
bot, chatbot, chatbot
|
55 |
+
)
|
56 |
+
txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
|
57 |
+
file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False).then(
|
58 |
+
bot_upload, chatbot, chatbot
|
59 |
+
)
|
60 |
+
|
61 |
+
demo.launch()
|