Spaces:
Sleeping
Sleeping
File size: 2,511 Bytes
3f9f23d 4a783fe 3f9f23d 4a783fe 3f9f23d 4a783fe 3f9f23d 4a783fe 3f9f23d 4a783fe 3f9f23d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import faiss
import numpy as np
import pandas as pd
import streamlit as st
import torch
from torch import Tensor
from transformers import AutoModel, AutoTokenizer
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
@st.cache_resource
def load_model_and_tokenizer():
tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-large')
model = AutoModel.from_pretrained('intfloat/multilingual-e5-large')
model.eval()
return model, tokenizer
@st.cache_resource
def load_title_data():
title_df = pd.read_csv('anlp2024.tsv', names=["pid", "title"], sep="\t")
return title_df
@st.cache_resource
def load_title_embeddings():
npz_comp = np.load("anlp2024.npz")
title_embeddings = npz_comp["arr_0"]
return title_embeddings
@st.cache_data
def get_retrieval_results(index, input_text, top_k, tokenizer, title_df):
batch_dict = tokenizer(f"query: {input_text}", max_length=512, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
outputs = model(**batch_dict)
query_embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
_, ids = index.search(x=np.array([query_embeddings]), k=top_k)
retrieved_titles = []
retrieved_pids = []
for id in ids[0]:
retrieved_titles.append(title_df.loc[id, "title"])
retrieved_pids.append(title_df.loc[id, "pid"])
df = pd.DataFrame({"pids": retrieved_pids, "paper": retrieved_titles})
return df
if __name__ == "__main__":
model, tokenizer = load_model_and_tokenizer()
title_df = load_title_data()
title_embeddings = load_title_embeddings()
index = faiss.IndexFlatL2(768)
index.add(title_embeddings)
st.markdown("## NLP2024 類似論文検索")
input_text = st.text_input('input', '', placeholder='ここに論文のタイトルを入力してください')
top_k = st.number_input('top_k', min_value=1, value=10, step=1)
if st.button('検索'):
stripped_input_text = input_text.strip()
df = get_retrieval_results(index, stripped_input_text, top_k, tokenizer, title_df)
st.table(df) |