Spaces:
Runtime error
Runtime error
from transformers import AutoModel, AutoTokenizer | |
import faiss | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
import torch | |
import math | |
import os | |
import re | |
os.environ['KMP_DUPLICATE_LIB_OK']='True' | |
def load_model_and_tokenizer(): | |
tokenizer = AutoTokenizer.from_pretrained("kaisugi/scitoricsbert") | |
model = AutoModel.from_pretrained("kaisugi/scitoricsbert", output_attentions=True) | |
model.eval() | |
return model, tokenizer | |
def load_sentence_data(): | |
sentence_df = pd.read_csv("sentence_data_858k.csv.gz") | |
return sentence_df | |
def load_sentence_embeddings_and_index(): | |
npz_comp = np.load("sentence_embeddings_858k.npz") | |
sentence_embeddings = npz_comp["arr_0"] | |
faiss.normalize_L2(sentence_embeddings) | |
D = 768 | |
N = 857610 | |
Xt = sentence_embeddings[:100000] | |
X = sentence_embeddings | |
# Param of PQ | |
M = 16 # The number of sub-vector. Typically this is 8, 16, 32, etc. | |
nbits = 8 # bits per sub-vector. This is typically 8, so that each sub-vec is encoded by 1 byte | |
# Param of IVF | |
nlist = int(math.sqrt(N)) # The number of cells (space partition). Typical value is sqrt(N) | |
# Param of HNSW | |
hnsw_m = 32 # The number of neighbors for HNSW. This is typically 32 | |
# Setup | |
quantizer = faiss.IndexHNSWFlat(D, hnsw_m) | |
index = faiss.IndexIVFPQ(quantizer, D, nlist, M, nbits) | |
# Train | |
index.train(Xt) | |
# Add | |
index.add(X) | |
# Search | |
index.nprobe = 8 # Runtime param. The number of cells that are visited for search. | |
return sentence_embeddings, index | |
def formulaic_phrase_extraction(sentences, model, tokenizer): | |
THRESHOLD = 0.01 | |
LAYER = 10 | |
output_sentences = [] | |
with torch.no_grad(): | |
inputs = tokenizer.batch_encode_plus( | |
sentences, | |
padding=True, | |
truncation=True, | |
max_length=512, | |
return_tensors='pt' | |
) | |
outputs = model(**inputs) | |
attention = outputs[-1] | |
cls_attentions = torch.mean(attention[LAYER][0], dim=0) | |
for sentence, cls_attention in zip(sentences, cls_attentions): | |
check_bool_arr = list((cls_attention > THRESHOLD).numpy())[1:-1] | |
tokens = tokenizer.tokenize(sentence) | |
cur_tokens = tokens.copy() | |
while True: | |
flg = False | |
for idx, token in enumerate(cur_tokens): | |
if token.startswith("##"): | |
flg = True | |
back_token = token.replace("##", "") | |
front_token = cur_tokens.pop(idx-1) | |
cur_tokens[idx-1] = front_token + back_token | |
back_bool_val = check_bool_arr[idx] | |
front_bool_val = check_bool_arr.pop(idx-1) | |
check_bool_arr[idx-1] = front_bool_val and back_bool_val | |
if not flg: | |
break | |
result = " ".join([f'<font color="coral">{original_word}</font>' if b else original_word for (b, original_word) in zip(check_bool_arr, sentence.split())]) | |
output_sentences.append(result) | |
return output_sentences | |
def get_retrieval_results(index, input_text, top_k, model, tokenizer, sentence_df, exclude_word_list, phrase_annotated=True): | |
with torch.no_grad(): | |
inputs = tokenizer.encode_plus( | |
input_text, | |
padding=True, | |
truncation=True, | |
max_length=512, | |
return_tensors='pt' | |
) | |
outputs = model(**inputs) | |
query_embeddings = outputs.last_hidden_state[:, 0, :][0] | |
query_embeddings = query_embeddings.detach().cpu().numpy() | |
query_embeddings = query_embeddings / np.linalg.norm(query_embeddings, ord=2) | |
_, ids = index.search(x=np.array([query_embeddings]), k=top_k) | |
retrieved_sentences = [] | |
retrieved_paper_ids = [] | |
for id in ids[0]: | |
cur_sentence = sentence_df.loc[id, "sentence"] | |
cur_link = f"https://aclanthology.org/{sentence_df.loc[id, 'file_id']}" | |
if len(exclude_word_list) == 0: | |
retrieved_sentences.append(cur_sentence) | |
retrieved_paper_ids.append(cur_link) | |
else: | |
exclude_word_list_regex = '|'.join(exclude_word_list) | |
pat = re.compile(f'{exclude_word_list_regex}') | |
if not bool(pat.search(cur_sentence)): | |
retrieved_sentences.append(cur_sentence) | |
retrieved_paper_ids.append(cur_link) | |
if phrase_annotated: | |
retrieved_sentences = formulaic_phrase_extraction(retrieved_sentences, model, tokenizer) | |
return retrieved_sentences, retrieved_paper_ids | |
if __name__ == "__main__": | |
model, tokenizer = load_model_and_tokenizer() | |
sentence_df = load_sentence_data() | |
sentence_embeddings, index = load_sentence_embeddings_and_index() | |
st.markdown("## AI-based Paraphrasing for Academic Writing") | |
input_text = st.text_area("text input", "Our model shows good results.", placeholder="Write something here...") | |
top_k = st.number_input('top_k (upperbound)', min_value=1, value=30, step=1) | |
input_words = st.text_input("exclude words (comma separated)", "good, result") | |
agree = st.checkbox('Include phrase annotation') | |
if st.button('search'): | |
exclude_word_list = [s.strip() for s in input_words.split(",") if s.strip() != ""] | |
retrieved_sentences, retrieved_paper_ids = get_retrieval_results(index, input_text, top_k, model, tokenizer, sentence_df, exclude_word_list, phrase_annotated=agree) | |
result_table_markdown = "| sentence | source link |\n|:---|:---|\n" | |
for (retrieved_sentence, retrieved_paper_id) in zip(retrieved_sentences, retrieved_paper_ids): | |
result_table_markdown += f"| {retrieved_sentence} | {retrieved_paper_id} |\n" | |
st.markdown(result_table_markdown, unsafe_allow_html=True) | |
st.markdown("---\n#### How this works") | |
st.markdown("This app uses ScitoricsBERT [(Sugimoto and Aizawa, 2022)](https://aclanthology.org/2022.sdp-1.7/), a functional sentence representation model, to retrieve sentences that are functionally similar to the input. It also extracts phrasal patterns that accord to the function, by leveraging self-attention patterns within ScitoricsBERT.") |