File size: 4,179 Bytes
d4e0f70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import matplotlib.pyplot as plt
from urlextract import URLExtract
from collections import Counter
from wordcloud import WordCloud, STOPWORDS ,ImageColorGenerator
import pandas as pd
import matplotlib.pylab as plt
import PIL.Image
import numpy as np
import emoji

extract=URLExtract()
def fetch_stats(selected_user,df):

    if selected_user!= "Group analysis":
        df=df[df['users']==selected_user]
    num_messages = df.shape[0]
    words = []
    for message in df['message']:
        words.extend(message.split())


    links=[]
    for message in df['message']:
        links.extend(extract.find_urls(message))

    return num_messages, len(words),len(links)

def most_busy_users(df):
    x = df['users'].value_counts().head()
    df=round((df['users'].value_counts() / df.shape[0]) * 100, 2).reset_index().rename(
        columns={'index': 'name', 'user': 'percent'})
    return x,df

def most_common_words(selected_user,df):
    f = open('stop_hinglish.txt', 'r')
    stop_words = f.read()

    if selected_user != "Group analysis":
        df = df[df['users'] == selected_user]
    temp = df[df['users'] != 'group_notification']
    temp = temp[temp['message'] != '<Media omitted>\n']

    words = []

    for message in temp['message']:
        for word in message.lower().split():
            if word not in stop_words:
                words.append(word)
    most_common_df=pd.DataFrame(Counter(words).most_common(30))
    return most_common_df

def word_cloud(selected_user,df):
    if selected_user != "Group analysis":
        df = df[df['users'] == selected_user]

    stopwords = set('STOPWORDS')

        # wordcloud
    wordcloud = WordCloud(stopwords=stopwords, background_color="Black").generate(''.join(df['message']))
    plt.figure(figsize=(10, 8), facecolor='k')
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.show()

    return wordcloud

def emoji_helper(selected_user,df):
    if selected_user != "Group analysis":
        df = df[df['users'] == selected_user]
    emojis = []
    for message in df['message']:
        emojis.extend([c for c in message if c in emoji.EMOJI_DATA.keys()])
    emoji_df=pd.DataFrame(Counter(emojis).most_common(len(Counter(emojis))))

    return emoji_df

def monthly_timeline(selected_user,df):
    if selected_user != "Group analysis":
        df = df[df['users'] == selected_user]

    timeline = df.groupby(['year', 'Month_name', 'Month']).count()['message'].reset_index()
    time = []
    for i in range(timeline.shape[0]):
        time.append(timeline['Month_name'][i] + "-" + str(timeline['year'][i]))
    timeline['time'] = time

    return timeline
def Daily_timeline(selected_user,df):
    if selected_user != "Group analysis":
        df = df[df['users'] == selected_user]

    daily_timeline = df.groupby('Date').count()['message'].reset_index()

    return daily_timeline

def week_activity_map(selected_user,df):
    if selected_user != "Group analysis":
        df = df[df['users'] == selected_user]
    return df['Day_name'].value_counts()

def month_activity_map(selected_user,df):
    if selected_user != "Group analysis":
        df = df[df['users'] == selected_user]
    return df['Month_name'].value_counts()

def activity_heatmap(selected_user,df):
    if selected_user != "Group analysis":
        df = df[df['users'] == selected_user]

    Activity_heatmap= df.pivot_table(index='Day_name', columns='period', values='message', aggfunc='count').fillna(0)
    return Activity_heatmap

def pos_words(selected_user,df):
    if selected_user != "Group analysis":
        df = df[df['users'] == selected_user]

    pos_word = df[df['vader_Analysis'] == 'Positive']
    pos_word = pos_word.pop('message')
    return pos_word

def neg_words(selected_user,df):
    if selected_user != "Group analysis":
        df = df[df['users'] == selected_user]

    neg_word = df[df['Analysis'] == 'Negative']
    neg_word = neg_word.pop('message')
    return neg_word

def neu_words(selected_user,df):
    if selected_user != "Group analysis":
        df = df[df['users'] == selected_user]

    neu_word = df[df['vader_Analysis'] == 'Neutral']
    neu_word = neu_word.pop('message')
    return neu_word