Spaces:
Build error
Build error
Delete app.py
Browse files
app.py
DELETED
@@ -1,156 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
-
from transformers import AutoTokenizer
|
4 |
-
from transformers import AutoModelForSequenceClassification
|
5 |
-
import nltk
|
6 |
-
nltk.download('all')
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
import helper
|
9 |
-
import preprocessor
|
10 |
-
import torch
|
11 |
-
import seaborn as sns
|
12 |
-
st.sidebar.title("Whatsapp Chat analyzer")
|
13 |
-
|
14 |
-
uploaded_file= st.sidebar.file_uploader("Choose a file")
|
15 |
-
|
16 |
-
if uploaded_file is not None:
|
17 |
-
|
18 |
-
bytes_data = uploaded_file.getvalue()
|
19 |
-
data=bytes_data.decode("utf-8")
|
20 |
-
df_new= preprocessor.preprocess(data)
|
21 |
-
|
22 |
-
user_list= df_new['users'].unique().tolist()
|
23 |
-
user_list.sort()
|
24 |
-
user_list.insert(0,"Group analysis")
|
25 |
-
selected_user=st.sidebar.selectbox("show analysis wrt",user_list)
|
26 |
-
if st.sidebar.button("Show Analysis"):
|
27 |
-
num_messages,words,num_links=helper.fetch_stats(selected_user,df_new)
|
28 |
-
st.title("Top Statistics")
|
29 |
-
col1,col2,col3=st.columns(3)
|
30 |
-
|
31 |
-
with col1:
|
32 |
-
st.header("Total Messages")
|
33 |
-
st.title(num_messages)
|
34 |
-
with col2:
|
35 |
-
st.header("Total Words")
|
36 |
-
st.title(words)
|
37 |
-
with col3:
|
38 |
-
st.header("Links Shared")
|
39 |
-
st.title(num_links)
|
40 |
-
|
41 |
-
st.title("Timeline")
|
42 |
-
col1, col2 = st.columns(2)
|
43 |
-
|
44 |
-
with col1:
|
45 |
-
st.header("Monthly ")
|
46 |
-
timeline = helper.monthly_timeline(selected_user, df_new)
|
47 |
-
fig, ax = plt.subplots()
|
48 |
-
ax.plot(timeline['time'], timeline['message'])
|
49 |
-
plt.xticks(rotation='vertical')
|
50 |
-
st.pyplot(fig)
|
51 |
-
with col2:
|
52 |
-
st.title("Daily")
|
53 |
-
daily_timeline = helper.Daily_timeline(selected_user, df_new)
|
54 |
-
fig, ax = plt.subplots()
|
55 |
-
ax.plot(daily_timeline['Date'], daily_timeline['message'], color='black')
|
56 |
-
plt.xticks(rotation='vertical')
|
57 |
-
st.pyplot(fig)
|
58 |
-
|
59 |
-
st.title("Activity Map")
|
60 |
-
col1,col2=st.columns(2)
|
61 |
-
|
62 |
-
with col1:
|
63 |
-
st.header("Most busy day")
|
64 |
-
busy_day=helper.week_activity_map(selected_user, df_new)
|
65 |
-
fig,ax=plt.subplots()
|
66 |
-
ax.bar(busy_day.index,busy_day.values,color=('pink','green','orange','black','blue','yellow','red'))
|
67 |
-
plt.xticks(rotation='vertical')
|
68 |
-
st.pyplot(fig)
|
69 |
-
with col2:
|
70 |
-
st.header("Most busy Month")
|
71 |
-
busy_day = helper.month_activity_map(selected_user, df_new)
|
72 |
-
fig, ax = plt.subplots()
|
73 |
-
ax.bar(busy_day.index, busy_day.values,color=('violet','indigo','blue','green'))
|
74 |
-
plt.xticks(rotation='vertical')
|
75 |
-
st.pyplot(fig)
|
76 |
-
|
77 |
-
st.title("Weekly Activity Map")
|
78 |
-
Activity_heatmap=helper.activity_heatmap(selected_user,df_new)
|
79 |
-
fig,ax=plt.subplots()
|
80 |
-
ax=sns.heatmap(Activity_heatmap,cmap='RdBu',linewidths=1,linecolor='black')
|
81 |
-
st.pyplot(fig)
|
82 |
-
|
83 |
-
if selected_user == "Group analysis":
|
84 |
-
st.title("Most busy user")
|
85 |
-
x,new_df=helper.most_busy_users(df_new)
|
86 |
-
fig,ax=plt.subplots()
|
87 |
-
col1,col2=st.columns(2)
|
88 |
-
|
89 |
-
with col1:
|
90 |
-
ax.bar(x.index, x.values,color=('blue','red','pink','orange','green'))
|
91 |
-
plt.xticks(rotation='vertical')
|
92 |
-
st.pyplot(fig)
|
93 |
-
with col2:
|
94 |
-
st.dataframe(new_df)
|
95 |
-
|
96 |
-
st.title("Chat Sentiment Analysis")
|
97 |
-
col1, col2, col3 = st.columns(3)
|
98 |
-
|
99 |
-
with col1:
|
100 |
-
st.header("Positive")
|
101 |
-
pos_words = helper.pos_words(selected_user, df_new)
|
102 |
-
st.dataframe(pos_words)
|
103 |
-
with col2:
|
104 |
-
st.header("Negative")
|
105 |
-
neg_words = helper.neg_words(selected_user, df_new)
|
106 |
-
st.dataframe(neg_words)
|
107 |
-
with col3:
|
108 |
-
st.header("Neutral")
|
109 |
-
neu_words = helper.neu_words(selected_user, df_new)
|
110 |
-
st.dataframe(neu_words)
|
111 |
-
|
112 |
-
|
113 |
-
st.title("Word cloud")
|
114 |
-
df_wc = helper.word_cloud(selected_user, df_new)
|
115 |
-
fig, ax = plt.subplots()
|
116 |
-
ax.imshow(df_wc)
|
117 |
-
plt.axis('off')
|
118 |
-
st.pyplot(fig)
|
119 |
-
|
120 |
-
st.title("Most Common Words")
|
121 |
-
most_common_df=helper.most_common_words(selected_user,df_new)
|
122 |
-
fig,ax=plt.subplots()
|
123 |
-
ax.barh(most_common_df[0],most_common_df[1],color=(0.1, 0.1, 0.1, 0.1), edgecolor='blue')
|
124 |
-
plt.ylabel(None)
|
125 |
-
sns.despine(left=True)
|
126 |
-
ax.grid(False)
|
127 |
-
ax.tick_params(bottom=True, left=False)
|
128 |
-
st.pyplot(fig)
|
129 |
-
st.dataframe(most_common_df.style.set_properties(**{"background-color": "black", "color": "lawngreen"}))
|
130 |
-
|
131 |
-
emoji_df=helper.emoji_helper(selected_user,df_new)
|
132 |
-
st.title("Emoji Analysis")
|
133 |
-
st.dataframe(emoji_df.style.set_properties(**{"background-color": "black", "color": "lawngreen"}))
|
134 |
-
|
135 |
-
|
136 |
-
st.title("Sentiment Analysis")
|
137 |
-
@st.cache(allow_output_mutation=True)
|
138 |
-
def get_model():
|
139 |
-
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment"
|
140 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
141 |
-
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
142 |
-
return tokenizer,model
|
143 |
-
|
144 |
-
|
145 |
-
tokenizer, model = get_model()
|
146 |
-
|
147 |
-
user_input = st.text_area('Enter Text to Analyze')
|
148 |
-
button = st.button("Analyze")
|
149 |
-
|
150 |
-
sent_pipeline = pipeline("sentiment-analysis")
|
151 |
-
if user_input and button:
|
152 |
-
test_sample = tokenizer([user_input], padding=True, truncation=True, max_length=512, return_tensors='pt')
|
153 |
-
# test_sample
|
154 |
-
output = model(**test_sample)
|
155 |
-
st.write("Prediction: ", sent_pipeline(user_input))
|
156 |
-
showWarningOnDirectExecution = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|