from smolagents import CodeAgent, HfApiModel, load_tool, tool import datetime import pytz import yaml from tools.final_answer import FinalAnswerTool from Gradio_UI import GradioUI # A simple example tool that currently does nothing but shows how to define a tool. @tool def my_custom_tool(arg1: str, arg2: int) -> str: """ A placeholder tool that returns a fun message. Args: arg1: The first argument as a string. arg2: The second argument as an integer. Returns: A string message. """ return "What magic will you build with this tool?" @tool def get_current_time_in_timezone(timezone: str) -> str: """ Returns the current local time in the specified timezone. Args: timezone: A valid timezone string (e.g., 'America/New_York'). Returns: A formatted string with the current local time or an error message. """ try: tz = pytz.timezone(timezone) local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error: could not fetch time for timezone '{timezone}'. Details: {e}" @tool def emoji_summarizer(text: str) -> str: """ Summarizes the input text using emojis representing key ideas. Args: text: Input text string. Returns: A string of emojis or a default emoji if no matches are found. """ mapping = { "happy": "😊", "sad": "😢", "fire": "🔥", "love": "❤️", "party": "🎉", "work": "💼", "sleep": "😴", "money": "💰", "music": "🎵", "food": "🍔", "travel": "✈️", "error": "❌", "question": "❓", } # Basic tokenization: lowercase and split on whitespace words = text.lower().split() emojis = [mapping[word] for word in words if word in mapping] if not emojis: return "🤔 (no matching emojis found)" return "".join(emojis) # Initialize the final answer tool final_answer = FinalAnswerTool() # Initialize the language model (make sure model_id is correct and accessible) model = HfApiModel( max_tokens=2096, temperature=0.5, model_id='Qwen/Qwen2.5-Coder-32B-Instruct', custom_role_conversions=None, ) # Load the text-to-image generation tool from the Hugging Face hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) # Load prompt templates from YAML file (make sure 'prompts.yaml' is present and valid) with open("prompts.yaml", "r") as stream: prompt_templates = yaml.safe_load(stream) # Initialize the code agent with all desired tools agent = CodeAgent( model=model, tools=[ final_answer, emoji_summarizer, image_generation_tool, my_custom_tool, get_current_time_in_timezone, ], max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates, ) # Launch the Gradio UI to interact with the agent GradioUI(agent).launch()