Kaleidophon commited on
Commit
96b3437
·
1 Parent(s): ab7e385

Fix path to comparison module in Huggingface hub

Browse files
Files changed (2) hide show
  1. README.md +1 -1
  2. almost_stochastic_order.py +1 -1
README.md CHANGED
@@ -64,7 +64,7 @@ The Almost Stochastic Order comparison output a single scalar:
64
  Example comparison:
65
 
66
  ```python
67
- aso = evaluate.load("almost_stochastic_order")
68
  results = aso.compute(predictions1=[-7, 123.45, 43, 4.91, 5], predictions2=[1337.12, -9.74, 1, 2, 3.21])
69
  print(results)
70
  {'violation_ratio': 1.0}
 
64
  Example comparison:
65
 
66
  ```python
67
+ aso = evaluate.load("kaleidophon/almost_stochastic_order")
68
  results = aso.compute(predictions1=[-7, 123.45, 43, 4.91, 5], predictions2=[1337.12, -9.74, 1, 2, 3.21])
69
  print(results)
70
  {'violation_ratio': 1.0}
almost_stochastic_order.py CHANGED
@@ -40,7 +40,7 @@ Kwargs:
40
  Returns:
41
  violation_ratio (`float`): (Frequentist upper bound to) Degree of violation of the stochastic order. When it is smaller than 0.5, the model producing predictions1 performs better than the other model at a confidence level specified by confidence_level argument (default is 0.95). Ulmer et al. (2022) recommend to reject the null hypothesis when violation_ratio is under 0.2.
42
  Examples:
43
- >>> aso = evaluate.load("almost_stochastic_order")
44
  >>> results = aso.compute(predictions1=[-7, 123.45, 43, 4.91, 5], predictions2=[1337.12, -9.74, 1, 2, 3.21])
45
  >>> print(results)
46
  {'violation_ratio': 1.0}
 
40
  Returns:
41
  violation_ratio (`float`): (Frequentist upper bound to) Degree of violation of the stochastic order. When it is smaller than 0.5, the model producing predictions1 performs better than the other model at a confidence level specified by confidence_level argument (default is 0.95). Ulmer et al. (2022) recommend to reject the null hypothesis when violation_ratio is under 0.2.
42
  Examples:
43
+ >>> aso = evaluate.load("kaleidophon/almost_stochastic_order")
44
  >>> results = aso.compute(predictions1=[-7, 123.45, 43, 4.91, 5], predictions2=[1337.12, -9.74, 1, 2, 3.21])
45
  >>> print(results)
46
  {'violation_ratio': 1.0}