import streamlit as st from openai import OpenAI import os import sys from dotenv import load_dotenv, dotenv_values load_dotenv() # initialize the client client = OpenAI( base_url="https://api-inference.huggingface.co/v1", api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Replace with your token ) # Create supported models model_links = { "Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1", "Mistral-Nemo-Instruct-2407": "mistralai/Mistral-Nemo-Instruct-2407", "Nous-Hermes-2-Mixtral-8x7B-DPO": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1", "Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2", "Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3", "Mistral-Small-Instruct-2409": "mistralai/Mistral-Small-Instruct-2409", } def reset_conversation(): #st.session_state.conversation = [] st.session_state.messages = [] return None def ask_assistant_stream(st_model, st_messages, st_temp_value, st_max_tokens): response=[] try: stream = client.chat.completions.create( model=st_model, messages=[ {"role": m["role"], "content": m["content"]} for m in st_messages ], temperature=st_temp_value, stream=True, max_tokens=st_max_tokens, ) response["stream"]=stream except Exception as e: pass return response # Define the available models models =[key for key in model_links.keys()] # Create the sidebar with the dropdown for model selection selected_model = st.sidebar.selectbox("Select Model", models) # Create a temperature slider temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5)) # Create a max_token slider max_token_value = st.sidebar.slider('Select a max_token value', 1000, 9000, (5000)) #Add reset button to clear conversation st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button # Create model description st.sidebar.write(f"You're now chatting with **{selected_model}**") st.sidebar.markdown("*Generated content may be inaccurate or false.*") # st.sidebar.markdown("\n[TypeGPT](https://typegpt.net).") if "prev_option" not in st.session_state: st.session_state.prev_option = selected_model if st.session_state.prev_option != selected_model: st.session_state.messages = [] # st.write(f"Changed to {selected_model}") st.session_state.prev_option = selected_model reset_conversation() #Pull in the model we want to use repo_id = model_links[selected_model] st.subheader(f'{selected_model}') # # st.title(f'ChatBot Using {selected_model}') # Set a default model if selected_model not in st.session_state: st.session_state[selected_model] = model_links[selected_model] # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if "retry" not in st.session_state: st.session_state.retry= False def retry_click(): st.session_state.retry= True if st.session_state.retry: lastmessage = st.session_state.messages.pop() st.toast("popped msg: " + lastmessage["content"] + " // model: " + model_links[selected_model]) response = get_assistant_aswer(model_links[selected_model], st.session_state.messages, temp_values, max_token_value) st.session_state.messages.append({"role": "assistant", "content": response}) st.session_state.retry= False st.rerun() if "remove" not in st.session_state: st.session_state.remove= False def remove_click(): st.session_state.remove= True if st.session_state.remove: lastmessage = st.session_state.messages.pop() prelastmessage = st.session_state.messages.pop() st.toast("popped msg: " + lastmessage["content"] + " // model: " + model_links[selected_model]) st.session_state.remove= False st.rerun() # Accept user input if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"): # Display user message in chat message container and Add user message to chat history with st.chat_message("user"): st.markdown(prompt) st.session_state.messages.append({"role": "user", "content": prompt}) # Display assistant response in chat message container assistant = ask_assistant_stream(model_links[selected_model], st.session_state.messages, temp_values, max_token_value) if "stream" in assistant: with st.chat_message("assistant"): response = st.write_stream(assistant["stream"]) else: with st.chat_message("assistant"): response = st.write("Failure") st.session_state.messages.append({"role": "assistant", "content": response}) if len(st.session_state.messages)>0: col1, col2 = st.columns(2) col1.button("retry", key="retryButton", on_click=retry_click) col2.button("remove", key="removeButton", on_click=remove_click)