Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +143 -0
- requirements.txt +12 -0
- train.py +143 -0
app.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset, Dataset
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
3 |
+
from transformers import TrainingArguments
|
4 |
+
from trl import SFTTrainer, SFTConfig
|
5 |
+
from peft import LoraConfig, prepare_model_for_kbit_training
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# Configure quantization
|
9 |
+
bnb_config = BitsAndBytesConfig(
|
10 |
+
load_in_4bit=True,
|
11 |
+
bnb_4bit_quant_type="nf4",
|
12 |
+
bnb_4bit_compute_dtype=torch.float16,
|
13 |
+
bnb_4bit_use_double_quant=True,
|
14 |
+
)
|
15 |
+
|
16 |
+
# Load model and tokenizer
|
17 |
+
model_name = "microsoft/phi-2"
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
model_name,
|
20 |
+
quantization_config=bnb_config,
|
21 |
+
device_map="auto",
|
22 |
+
trust_remote_code=True
|
23 |
+
)
|
24 |
+
model.config.use_cache = False
|
25 |
+
|
26 |
+
# Load tokenizer
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
28 |
+
tokenizer.pad_token = tokenizer.eos_token
|
29 |
+
|
30 |
+
# Prepare model for k-bit training
|
31 |
+
model = prepare_model_for_kbit_training(model)
|
32 |
+
|
33 |
+
# Configure LoRA
|
34 |
+
peft_config = LoraConfig(
|
35 |
+
r=16,
|
36 |
+
lora_alpha=32,
|
37 |
+
lora_dropout=0.05,
|
38 |
+
bias="none",
|
39 |
+
task_type="CAUSAL_LM",
|
40 |
+
target_modules=["q_proj", "k_proj", "v_proj", "dense"]
|
41 |
+
)
|
42 |
+
|
43 |
+
# Load and preprocess dataset
|
44 |
+
ds = load_dataset("OpenAssistant/oasst1")
|
45 |
+
train_dataset = ds['train']
|
46 |
+
|
47 |
+
def format_conversation(example):
|
48 |
+
"""Format the conversation for instruction fine-tuning"""
|
49 |
+
# Only process root messages (start of conversations)
|
50 |
+
if example["role"] == "prompter" and example["parent_id"] is None:
|
51 |
+
conversation = []
|
52 |
+
current_msg = example
|
53 |
+
conversation.append(("Human", current_msg["text"]))
|
54 |
+
|
55 |
+
# Follow the conversation thread
|
56 |
+
current_id = current_msg["message_id"]
|
57 |
+
while current_id in message_children:
|
58 |
+
# Get the next message in conversation
|
59 |
+
next_msg = message_children[current_id]
|
60 |
+
if next_msg["role"] == "assistant":
|
61 |
+
conversation.append(("Assistant", next_msg["text"]))
|
62 |
+
elif next_msg["role"] == "prompter":
|
63 |
+
conversation.append(("Human", next_msg["text"]))
|
64 |
+
current_id = next_msg["message_id"]
|
65 |
+
|
66 |
+
if len(conversation) >= 2: # At least one exchange (human->assistant)
|
67 |
+
formatted_text = ""
|
68 |
+
for speaker, text in conversation:
|
69 |
+
formatted_text += f"{speaker}: {text}\n\n"
|
70 |
+
return {"text": formatted_text.strip()}
|
71 |
+
return {"text": None}
|
72 |
+
|
73 |
+
# Build message relationships
|
74 |
+
print("Building conversation threads...")
|
75 |
+
message_children = {}
|
76 |
+
for example in train_dataset:
|
77 |
+
if example["parent_id"] is not None:
|
78 |
+
message_children[example["parent_id"]] = example
|
79 |
+
|
80 |
+
# Format complete conversations
|
81 |
+
print("\nFormatting conversations...")
|
82 |
+
processed_dataset = []
|
83 |
+
for example in train_dataset:
|
84 |
+
result = format_conversation(example)
|
85 |
+
if result["text"] is not None:
|
86 |
+
processed_dataset.append(result)
|
87 |
+
if len(processed_dataset) % 100 == 0 and len(processed_dataset) > 0:
|
88 |
+
print(f"Found {len(processed_dataset)} valid conversations")
|
89 |
+
|
90 |
+
print(f"Final dataset size: {len(processed_dataset)} conversations")
|
91 |
+
|
92 |
+
# Convert to Dataset format
|
93 |
+
train_dataset = Dataset.from_list(processed_dataset)
|
94 |
+
|
95 |
+
# Remove the redundant conversion
|
96 |
+
# train_dataset = list(train_dataset)
|
97 |
+
# train_dataset = Dataset.from_list(train_dataset)
|
98 |
+
|
99 |
+
# Convert to standard dataset for training
|
100 |
+
train_dataset = list(train_dataset)
|
101 |
+
train_dataset = Dataset.from_list(train_dataset)
|
102 |
+
|
103 |
+
# Configure SFT parameters
|
104 |
+
sft_config = SFTConfig(
|
105 |
+
output_dir="phi2-finetuned",
|
106 |
+
num_train_epochs=1,
|
107 |
+
max_steps=500,
|
108 |
+
per_device_train_batch_size=4,
|
109 |
+
gradient_accumulation_steps=1,
|
110 |
+
learning_rate=2e-4,
|
111 |
+
weight_decay=0.001,
|
112 |
+
logging_steps=1,
|
113 |
+
logging_strategy="steps",
|
114 |
+
save_strategy="steps",
|
115 |
+
save_steps=100,
|
116 |
+
save_total_limit=3,
|
117 |
+
push_to_hub=False,
|
118 |
+
max_seq_length=512,
|
119 |
+
report_to="none",
|
120 |
+
)
|
121 |
+
|
122 |
+
# Initialize trainer
|
123 |
+
trainer = SFTTrainer(
|
124 |
+
model=model,
|
125 |
+
train_dataset=train_dataset, # Changed from dataset to train_dataset
|
126 |
+
peft_config=peft_config,
|
127 |
+
args=sft_config,
|
128 |
+
)
|
129 |
+
|
130 |
+
# Train the model
|
131 |
+
trainer.train()
|
132 |
+
|
133 |
+
# Save the trained model in Hugging Face format
|
134 |
+
trainer.save_model("phi2-finetuned-final")
|
135 |
+
|
136 |
+
# Save the model in PyTorch format
|
137 |
+
model_save_path = "phi2-finetuned-final/model.pt"
|
138 |
+
torch.save({
|
139 |
+
'model_state_dict': trainer.model.state_dict(),
|
140 |
+
'config': trainer.model.config,
|
141 |
+
'peft_config': peft_config,
|
142 |
+
}, model_save_path)
|
143 |
+
print(f"Model saved in PyTorch format at: {model_save_path}")
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers>=4.34.0
|
2 |
+
datasets>=2.14.0
|
3 |
+
peft>=0.5.0
|
4 |
+
bitsandbytes>=0.41.1
|
5 |
+
accelerate>=0.23.0
|
6 |
+
torch>=2.0.0
|
7 |
+
bitsandbytes
|
8 |
+
trl
|
9 |
+
gradio
|
10 |
+
torch
|
11 |
+
transformers
|
12 |
+
peft
|
train.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset, Dataset
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
3 |
+
from transformers import TrainingArguments
|
4 |
+
from trl import SFTTrainer, SFTConfig
|
5 |
+
from peft import LoraConfig, prepare_model_for_kbit_training
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# Configure quantization
|
9 |
+
bnb_config = BitsAndBytesConfig(
|
10 |
+
load_in_4bit=True,
|
11 |
+
bnb_4bit_quant_type="nf4",
|
12 |
+
bnb_4bit_compute_dtype=torch.float16,
|
13 |
+
bnb_4bit_use_double_quant=True,
|
14 |
+
)
|
15 |
+
|
16 |
+
# Load model and tokenizer
|
17 |
+
model_name = "microsoft/phi-2"
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
model_name,
|
20 |
+
quantization_config=bnb_config,
|
21 |
+
device_map="auto",
|
22 |
+
trust_remote_code=True
|
23 |
+
)
|
24 |
+
model.config.use_cache = False
|
25 |
+
|
26 |
+
# Load tokenizer
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
28 |
+
tokenizer.pad_token = tokenizer.eos_token
|
29 |
+
|
30 |
+
# Prepare model for k-bit training
|
31 |
+
model = prepare_model_for_kbit_training(model)
|
32 |
+
|
33 |
+
# Configure LoRA
|
34 |
+
peft_config = LoraConfig(
|
35 |
+
r=16,
|
36 |
+
lora_alpha=32,
|
37 |
+
lora_dropout=0.05,
|
38 |
+
bias="none",
|
39 |
+
task_type="CAUSAL_LM",
|
40 |
+
target_modules=["q_proj", "k_proj", "v_proj", "dense"]
|
41 |
+
)
|
42 |
+
|
43 |
+
# Load and preprocess dataset
|
44 |
+
ds = load_dataset("OpenAssistant/oasst1")
|
45 |
+
train_dataset = ds['train']
|
46 |
+
|
47 |
+
def format_conversation(example):
|
48 |
+
"""Format the conversation for instruction fine-tuning"""
|
49 |
+
# Only process root messages (start of conversations)
|
50 |
+
if example["role"] == "prompter" and example["parent_id"] is None:
|
51 |
+
conversation = []
|
52 |
+
current_msg = example
|
53 |
+
conversation.append(("Human", current_msg["text"]))
|
54 |
+
|
55 |
+
# Follow the conversation thread
|
56 |
+
current_id = current_msg["message_id"]
|
57 |
+
while current_id in message_children:
|
58 |
+
# Get the next message in conversation
|
59 |
+
next_msg = message_children[current_id]
|
60 |
+
if next_msg["role"] == "assistant":
|
61 |
+
conversation.append(("Assistant", next_msg["text"]))
|
62 |
+
elif next_msg["role"] == "prompter":
|
63 |
+
conversation.append(("Human", next_msg["text"]))
|
64 |
+
current_id = next_msg["message_id"]
|
65 |
+
|
66 |
+
if len(conversation) >= 2: # At least one exchange (human->assistant)
|
67 |
+
formatted_text = ""
|
68 |
+
for speaker, text in conversation:
|
69 |
+
formatted_text += f"{speaker}: {text}\n\n"
|
70 |
+
return {"text": formatted_text.strip()}
|
71 |
+
return {"text": None}
|
72 |
+
|
73 |
+
# Build message relationships
|
74 |
+
print("Building conversation threads...")
|
75 |
+
message_children = {}
|
76 |
+
for example in train_dataset:
|
77 |
+
if example["parent_id"] is not None:
|
78 |
+
message_children[example["parent_id"]] = example
|
79 |
+
|
80 |
+
# Format complete conversations
|
81 |
+
print("\nFormatting conversations...")
|
82 |
+
processed_dataset = []
|
83 |
+
for example in train_dataset:
|
84 |
+
result = format_conversation(example)
|
85 |
+
if result["text"] is not None:
|
86 |
+
processed_dataset.append(result)
|
87 |
+
if len(processed_dataset) % 100 == 0 and len(processed_dataset) > 0:
|
88 |
+
print(f"Found {len(processed_dataset)} valid conversations")
|
89 |
+
|
90 |
+
print(f"Final dataset size: {len(processed_dataset)} conversations")
|
91 |
+
|
92 |
+
# Convert to Dataset format
|
93 |
+
train_dataset = Dataset.from_list(processed_dataset)
|
94 |
+
|
95 |
+
# Remove the redundant conversion
|
96 |
+
# train_dataset = list(train_dataset)
|
97 |
+
# train_dataset = Dataset.from_list(train_dataset)
|
98 |
+
|
99 |
+
# Convert to standard dataset for training
|
100 |
+
train_dataset = list(train_dataset)
|
101 |
+
train_dataset = Dataset.from_list(train_dataset)
|
102 |
+
|
103 |
+
# Configure SFT parameters
|
104 |
+
sft_config = SFTConfig(
|
105 |
+
output_dir="phi2-finetuned",
|
106 |
+
num_train_epochs=1,
|
107 |
+
max_steps=500,
|
108 |
+
per_device_train_batch_size=4,
|
109 |
+
gradient_accumulation_steps=1,
|
110 |
+
learning_rate=2e-4,
|
111 |
+
weight_decay=0.001,
|
112 |
+
logging_steps=1,
|
113 |
+
logging_strategy="steps",
|
114 |
+
save_strategy="steps",
|
115 |
+
save_steps=100,
|
116 |
+
save_total_limit=3,
|
117 |
+
push_to_hub=False,
|
118 |
+
max_seq_length=512,
|
119 |
+
report_to="none",
|
120 |
+
)
|
121 |
+
|
122 |
+
# Initialize trainer
|
123 |
+
trainer = SFTTrainer(
|
124 |
+
model=model,
|
125 |
+
train_dataset=train_dataset, # Changed from dataset to train_dataset
|
126 |
+
peft_config=peft_config,
|
127 |
+
args=sft_config,
|
128 |
+
)
|
129 |
+
|
130 |
+
# Train the model
|
131 |
+
trainer.train()
|
132 |
+
|
133 |
+
# Save the trained model in Hugging Face format
|
134 |
+
trainer.save_model("phi2-finetuned-final")
|
135 |
+
|
136 |
+
# Save the model in PyTorch format
|
137 |
+
model_save_path = "phi2-finetuned-final/model.pt"
|
138 |
+
torch.save({
|
139 |
+
'model_state_dict': trainer.model.state_dict(),
|
140 |
+
'config': trainer.model.config,
|
141 |
+
'peft_config': peft_config,
|
142 |
+
}, model_save_path)
|
143 |
+
print(f"Model saved in PyTorch format at: {model_save_path}")
|