Update app.py
Browse files
app.py
CHANGED
@@ -1,143 +1,71 @@
|
|
1 |
-
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
-
from
|
4 |
-
from trl import SFTTrainer, SFTConfig
|
5 |
-
from peft import LoraConfig, prepare_model_for_kbit_training
|
6 |
import torch
|
7 |
|
8 |
-
#
|
9 |
-
bnb_config = BitsAndBytesConfig(
|
10 |
-
load_in_4bit=True,
|
11 |
-
bnb_4bit_quant_type="nf4",
|
12 |
-
bnb_4bit_compute_dtype=torch.float16,
|
13 |
-
bnb_4bit_use_double_quant=True,
|
14 |
-
)
|
15 |
-
|
16 |
-
# Load model and tokenizer
|
17 |
model_name = "microsoft/phi-2"
|
18 |
-
|
19 |
model_name,
|
20 |
-
|
21 |
-
device_map="auto",
|
22 |
trust_remote_code=True
|
23 |
)
|
24 |
-
model.config.use_cache = False
|
25 |
-
|
26 |
-
# Load tokenizer
|
27 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
28 |
-
tokenizer.pad_token = tokenizer.eos_token
|
29 |
-
|
30 |
-
# Prepare model for k-bit training
|
31 |
-
model = prepare_model_for_kbit_training(model)
|
32 |
-
|
33 |
-
# Configure LoRA
|
34 |
-
peft_config = LoraConfig(
|
35 |
-
r=16,
|
36 |
-
lora_alpha=32,
|
37 |
-
lora_dropout=0.05,
|
38 |
-
bias="none",
|
39 |
-
task_type="CAUSAL_LM",
|
40 |
-
target_modules=["q_proj", "k_proj", "v_proj", "dense"]
|
41 |
-
)
|
42 |
-
|
43 |
-
# Load and preprocess dataset
|
44 |
-
ds = load_dataset("OpenAssistant/oasst1")
|
45 |
-
train_dataset = ds['train']
|
46 |
-
|
47 |
-
def format_conversation(example):
|
48 |
-
"""Format the conversation for instruction fine-tuning"""
|
49 |
-
# Only process root messages (start of conversations)
|
50 |
-
if example["role"] == "prompter" and example["parent_id"] is None:
|
51 |
-
conversation = []
|
52 |
-
current_msg = example
|
53 |
-
conversation.append(("Human", current_msg["text"]))
|
54 |
-
|
55 |
-
# Follow the conversation thread
|
56 |
-
current_id = current_msg["message_id"]
|
57 |
-
while current_id in message_children:
|
58 |
-
# Get the next message in conversation
|
59 |
-
next_msg = message_children[current_id]
|
60 |
-
if next_msg["role"] == "assistant":
|
61 |
-
conversation.append(("Assistant", next_msg["text"]))
|
62 |
-
elif next_msg["role"] == "prompter":
|
63 |
-
conversation.append(("Human", next_msg["text"]))
|
64 |
-
current_id = next_msg["message_id"]
|
65 |
-
|
66 |
-
if len(conversation) >= 2: # At least one exchange (human->assistant)
|
67 |
-
formatted_text = ""
|
68 |
-
for speaker, text in conversation:
|
69 |
-
formatted_text += f"{speaker}: {text}\n\n"
|
70 |
-
return {"text": formatted_text.strip()}
|
71 |
-
return {"text": None}
|
72 |
|
73 |
-
#
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
message_children[example["parent_id"]] = example
|
79 |
-
|
80 |
-
# Format complete conversations
|
81 |
-
print("\nFormatting conversations...")
|
82 |
-
processed_dataset = []
|
83 |
-
for example in train_dataset:
|
84 |
-
result = format_conversation(example)
|
85 |
-
if result["text"] is not None:
|
86 |
-
processed_dataset.append(result)
|
87 |
-
if len(processed_dataset) % 100 == 0 and len(processed_dataset) > 0:
|
88 |
-
print(f"Found {len(processed_dataset)} valid conversations")
|
89 |
-
|
90 |
-
print(f"Final dataset size: {len(processed_dataset)} conversations")
|
91 |
-
|
92 |
-
# Convert to Dataset format
|
93 |
-
train_dataset = Dataset.from_list(processed_dataset)
|
94 |
-
|
95 |
-
# Remove the redundant conversion
|
96 |
-
# train_dataset = list(train_dataset)
|
97 |
-
# train_dataset = Dataset.from_list(train_dataset)
|
98 |
-
|
99 |
-
# Convert to standard dataset for training
|
100 |
-
train_dataset = list(train_dataset)
|
101 |
-
train_dataset = Dataset.from_list(train_dataset)
|
102 |
-
|
103 |
-
# Configure SFT parameters
|
104 |
-
sft_config = SFTConfig(
|
105 |
-
output_dir="phi2-finetuned",
|
106 |
-
num_train_epochs=1,
|
107 |
-
max_steps=500,
|
108 |
-
per_device_train_batch_size=4,
|
109 |
-
gradient_accumulation_steps=1,
|
110 |
-
learning_rate=2e-4,
|
111 |
-
weight_decay=0.001,
|
112 |
-
logging_steps=1,
|
113 |
-
logging_strategy="steps",
|
114 |
-
save_strategy="steps",
|
115 |
-
save_steps=100,
|
116 |
-
save_total_limit=3,
|
117 |
-
push_to_hub=False,
|
118 |
-
max_seq_length=512,
|
119 |
-
report_to="none",
|
120 |
)
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
)
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
# Save the trained model in Hugging Face format
|
134 |
-
trainer.save_model("phi2-finetuned-final")
|
135 |
-
|
136 |
-
# Save the model in PyTorch format
|
137 |
-
model_save_path = "phi2-finetuned-final/model.pt"
|
138 |
-
torch.save({
|
139 |
-
'model_state_dict': trainer.model.state_dict(),
|
140 |
-
'config': trainer.model.config,
|
141 |
-
'peft_config': peft_config,
|
142 |
-
}, model_save_path)
|
143 |
-
print(f"Model saved in PyTorch format at: {model_save_path}")
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from peft import PeftModel
|
|
|
|
|
4 |
import torch
|
5 |
|
6 |
+
# Load base model and tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
model_name = "microsoft/phi-2"
|
8 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
9 |
model_name,
|
10 |
+
device_map={"": "cpu"}, # Force CPU usage
|
|
|
11 |
trust_remote_code=True
|
12 |
)
|
|
|
|
|
|
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Load fine-tuned adapter
|
16 |
+
model = PeftModel.from_pretrained(
|
17 |
+
base_model,
|
18 |
+
"phi2-finetuned-final",
|
19 |
+
device_map={"": "cpu"} # Force CPU usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
)
|
21 |
|
22 |
+
def generate_response(message, history):
|
23 |
+
# Format input as instruction-based conversation
|
24 |
+
prompt = "You are a helpful AI assistant. Please provide clear and concise responses.\n\n"
|
25 |
+
for human, assistant in history[-7:]: # Keep last 7 exchanges for context
|
26 |
+
prompt += f"Instruction: {human}\nResponse: {assistant}\n\n"
|
27 |
+
prompt += f"Instruction: {message}\nResponse:"
|
28 |
+
|
29 |
+
# Generate response with limited length
|
30 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = model.generate(
|
33 |
+
**inputs,
|
34 |
+
max_new_tokens=96, # Limited to 96 tokens
|
35 |
+
max_length=512, # Keep history context at 512
|
36 |
+
temperature=0.6,
|
37 |
+
num_return_sequences=1,
|
38 |
+
pad_token_id=tokenizer.eos_token_id,
|
39 |
+
do_sample=True,
|
40 |
+
top_p=0.7,
|
41 |
+
min_length=1,
|
42 |
+
eos_token_id=tokenizer.eos_token_id,
|
43 |
+
early_stopping=True,
|
44 |
+
no_repeat_ngram_size=3,
|
45 |
+
repetition_penalty=1.2
|
46 |
+
)
|
47 |
+
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
48 |
+
return response.strip()
|
49 |
+
|
50 |
+
# Create Gradio interface
|
51 |
+
css = """
|
52 |
+
.gradio-container {max-width: 1000px !important}
|
53 |
+
.chatbot {min-height: 700px !important}
|
54 |
+
.chat-message {font-size: 16px !important}
|
55 |
+
"""
|
56 |
+
|
57 |
+
demo = gr.ChatInterface(
|
58 |
+
generate_response,
|
59 |
+
chatbot=gr.Chatbot(height=700), # Increased height
|
60 |
+
textbox=gr.Textbox(placeholder="Type your message here...", container=False, scale=0.9),
|
61 |
+
title="Phi-2 Conversational Assistant",
|
62 |
+
description="A fine-tuned Phi-2 model for conversational AI",
|
63 |
+
theme="soft",
|
64 |
+
css=css,
|
65 |
+
examples=["Tell me about yourself",
|
66 |
+
"What can you help me with?",
|
67 |
+
"How do you process information?"],
|
68 |
)
|
69 |
|
70 |
+
if __name__ == "__main__":
|
71 |
+
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|