Spaces:
Runtime error
Runtime error
Upload 6 files
Browse files- app.py +67 -0
- input.txt +0 -0
- requirements.txt +4 -0
- train-transformar.py +346 -0
- trained_model_quantized.pt +3 -0
- training_logs.txt +229 -0
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import tiktoken
|
4 |
+
from transformer import GPT, GPTConfig # Ensure you import your model class
|
5 |
+
|
6 |
+
# Load the trained model
|
7 |
+
@st.cache_resource
|
8 |
+
def load_model():
|
9 |
+
config = GPTConfig()
|
10 |
+
model = GPT(config)
|
11 |
+
try:
|
12 |
+
# Load the model with map_location to handle CPU-only environments
|
13 |
+
model.load_state_dict(torch.load('trained_model_quantized.pt', map_location=torch.device('cpu')), strict=False)
|
14 |
+
model.eval() # Set the model to evaluation mode
|
15 |
+
st.success("Model loaded successfully!")
|
16 |
+
except Exception as e:
|
17 |
+
st.error(f"Error loading model: {e}")
|
18 |
+
return model
|
19 |
+
|
20 |
+
# Load the tokenizer
|
21 |
+
def load_tokenizer():
|
22 |
+
return tiktoken.get_encoding('gpt2')
|
23 |
+
|
24 |
+
# Generate text function
|
25 |
+
def generate_text(model, tokenizer, input_text, length, num_sequences):
|
26 |
+
# Encode the input text
|
27 |
+
input_ids = tokenizer.encode(input_text)
|
28 |
+
input_tensor = torch.tensor(input_ids).unsqueeze(0) # Add batch dimension (shape: [1, T])
|
29 |
+
|
30 |
+
generated_sequences = []
|
31 |
+
for _ in range(num_sequences):
|
32 |
+
# Generate additional tokens
|
33 |
+
with torch.no_grad():
|
34 |
+
for _ in range(length):
|
35 |
+
logits = model(input_tensor)[0] # Get logits
|
36 |
+
next_token_logits = logits[:, -1, :] # Get the last token's logits
|
37 |
+
next_token_probs = torch.softmax(next_token_logits, dim=-1)
|
38 |
+
next_token = torch.multinomial(next_token_probs, num_samples=1) # Sample from the distribution
|
39 |
+
|
40 |
+
# Ensure the next_token has the correct shape for concatenation
|
41 |
+
next_token = next_token.view(1, -1) # Reshape to [1, 1] if necessary
|
42 |
+
input_tensor = torch.cat((input_tensor, next_token), dim=1) # Append the new token
|
43 |
+
|
44 |
+
# Decode the generated tokens
|
45 |
+
generated_sequences.append(tokenizer.decode(input_tensor[0].tolist()))
|
46 |
+
|
47 |
+
return generated_sequences
|
48 |
+
|
49 |
+
# Streamlit app layout
|
50 |
+
st.title("GPT Text Generator")
|
51 |
+
st.write("Enter your text and specify the length of additional text to generate.")
|
52 |
+
|
53 |
+
input_text = st.text_area("Input Text", "Once upon a time", max_chars=512) # Limit to 512 characters
|
54 |
+
length = st.slider("Predict Additional Text of Length", 1, 50, 10)
|
55 |
+
num_sequences = st.slider("Number of Sequences to Generate", 1, 5, 1)
|
56 |
+
|
57 |
+
if st.button("Generate"):
|
58 |
+
model = load_model() # Load the model for inference
|
59 |
+
tokenizer = load_tokenizer() # Load the tokenizer
|
60 |
+
st.write("Generating text...")
|
61 |
+
generated_texts = generate_text(model, tokenizer, input_text, length, num_sequences)
|
62 |
+
st.write("Text generation complete.")
|
63 |
+
|
64 |
+
st.write("Generated Texts:")
|
65 |
+
for i, text in enumerate(generated_texts):
|
66 |
+
st.subheader(f"Sequence {i + 1}")
|
67 |
+
st.write(text)
|
input.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
tiktoken
|
4 |
+
torchsummary
|
train-transformar.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Solving for residual std scaling issue
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
from dataclasses import dataclass
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
from tqdm import tqdm # Import tqdm for progress bar
|
10 |
+
import torch.quantization # Import quantization module
|
11 |
+
import torch.nn.utils.prune as prune
|
12 |
+
import tiktoken
|
13 |
+
|
14 |
+
|
15 |
+
class CausalSelfAttention(nn.Module):
|
16 |
+
|
17 |
+
def __init__(self, config):
|
18 |
+
super().__init__()
|
19 |
+
assert config.n_embd % config.n_head == 0
|
20 |
+
# key, query, value projections for all heads, but in a batch
|
21 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
22 |
+
# output projection
|
23 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
24 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
25 |
+
# regularization
|
26 |
+
self.n_head = config.n_head
|
27 |
+
self.n_embd = config.n_embd
|
28 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
32 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
33 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
34 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
35 |
+
qkv = self.c_attn(x)
|
36 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
37 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
38 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
39 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
40 |
+
|
41 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
42 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
43 |
+
att = F.softmax(att, dim=-1)
|
44 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
45 |
+
|
46 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
47 |
+
# output projection
|
48 |
+
y = self.c_proj(y)
|
49 |
+
return y
|
50 |
+
|
51 |
+
|
52 |
+
class MLP(nn.Module):
|
53 |
+
|
54 |
+
def __init__(self, config):
|
55 |
+
super().__init__()
|
56 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
57 |
+
self.gelu = nn.GELU(approximate='tanh')
|
58 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
59 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
x = self.c_fc(x)
|
63 |
+
x = self.gelu(x)
|
64 |
+
x = self.c_proj(x)
|
65 |
+
return x
|
66 |
+
|
67 |
+
class Block(nn.Module):
|
68 |
+
|
69 |
+
def __init__(self, config):
|
70 |
+
super().__init__()
|
71 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
72 |
+
self.attn = CausalSelfAttention(config)
|
73 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
74 |
+
self.mlp = MLP(config)
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
x = x + self.attn(self.ln_1(x))
|
78 |
+
x = x + self.mlp(self.ln_2(x))
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
@dataclass
|
83 |
+
class GPTConfig:
|
84 |
+
block_size: int = 1024 # max sequence length
|
85 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
86 |
+
n_layer: int = 12 # number of layers
|
87 |
+
n_head: int = 12 # number of heads
|
88 |
+
n_embd: int = 768 # embedding dimension
|
89 |
+
|
90 |
+
|
91 |
+
class GPT(nn.Module):
|
92 |
+
|
93 |
+
def __init__(self, config):
|
94 |
+
super().__init__()
|
95 |
+
self.config = config
|
96 |
+
|
97 |
+
self.transformer = nn.ModuleDict(dict(
|
98 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
99 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
100 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
101 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
102 |
+
))
|
103 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
104 |
+
|
105 |
+
# weight sharing
|
106 |
+
self.transformer.wte.weight = self.lm_head.weight
|
107 |
+
|
108 |
+
# weight initialization
|
109 |
+
self.apply(self._init_weights)
|
110 |
+
|
111 |
+
def _init_weights(self, module):
|
112 |
+
if isinstance(module, nn.Linear):
|
113 |
+
std = 0.02
|
114 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
115 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
116 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
117 |
+
if module.bias is not None:
|
118 |
+
torch.nn.init.zeros_(module.bias)
|
119 |
+
elif isinstance(module, nn.Embedding):
|
120 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
121 |
+
|
122 |
+
def print_num_parameters(self):
|
123 |
+
num_params = sum(p.numel() for p in self.parameters())
|
124 |
+
print(f"Number of model parameters: {num_params}")
|
125 |
+
|
126 |
+
def forward(self, idx, targets=None):
|
127 |
+
# idx is of shape (B, T)
|
128 |
+
B, T = idx.size()
|
129 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
130 |
+
# forward the token and posisition embeddings
|
131 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
132 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
133 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
134 |
+
x = tok_emb + pos_emb
|
135 |
+
# forward the blocks of the transformer
|
136 |
+
for block in self.transformer.h:
|
137 |
+
x = block(x)
|
138 |
+
# forward the final layernorm and the classifier
|
139 |
+
x = self.transformer.ln_f(x)
|
140 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
141 |
+
loss = None
|
142 |
+
if targets is not None:
|
143 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
144 |
+
return logits, loss
|
145 |
+
|
146 |
+
@classmethod
|
147 |
+
def from_pretrained(cls, model_type):
|
148 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
149 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
150 |
+
from transformers import GPT2LMHeadModel
|
151 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
152 |
+
|
153 |
+
# n_layer, n_head and n_embd are determined from model_type
|
154 |
+
config_args = {
|
155 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
156 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
157 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
158 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
159 |
+
}[model_type]
|
160 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
161 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
162 |
+
# create a from-scratch initialized minGPT model
|
163 |
+
config = GPTConfig(**config_args)
|
164 |
+
model = GPT(config)
|
165 |
+
sd = model.state_dict()
|
166 |
+
sd_keys = sd.keys()
|
167 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
168 |
+
|
169 |
+
# init a huggingface/transformers model
|
170 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
171 |
+
sd_hf = model_hf.state_dict()
|
172 |
+
|
173 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
174 |
+
sd_keys_hf = sd_hf.keys()
|
175 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
176 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
177 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
178 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
179 |
+
# this means that we have to transpose these weights when we import them
|
180 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
181 |
+
for k in sd_keys_hf:
|
182 |
+
if any(k.endswith(w) for w in transposed):
|
183 |
+
# special treatment for the Conv1D weights we need to transpose
|
184 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
185 |
+
with torch.no_grad():
|
186 |
+
sd[k].copy_(sd_hf[k].t())
|
187 |
+
else:
|
188 |
+
# vanilla copy over the other parameters
|
189 |
+
assert sd_hf[k].shape == sd[k].shape
|
190 |
+
with torch.no_grad():
|
191 |
+
sd[k].copy_(sd_hf[k])
|
192 |
+
|
193 |
+
return model
|
194 |
+
|
195 |
+
|
196 |
+
device = 'cpu'
|
197 |
+
if torch.cuda.is_available():
|
198 |
+
device = 'cuda'
|
199 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
200 |
+
device = "mps"
|
201 |
+
print(f"using device: {device}")
|
202 |
+
|
203 |
+
# SEED
|
204 |
+
torch.manual_seed(1337)
|
205 |
+
if torch.cuda.is_available():
|
206 |
+
torch.cuda.manual_seed(1337)
|
207 |
+
|
208 |
+
class DataLoaderLite:
|
209 |
+
def __init__(self, B, T):
|
210 |
+
self.B = B
|
211 |
+
self.T = T
|
212 |
+
|
213 |
+
# at init load tokens from disk and store them in memory
|
214 |
+
with open('input.txt', 'r') as f:
|
215 |
+
text = f.read()
|
216 |
+
enc = tiktoken.get_encoding('gpt2')
|
217 |
+
tokens = enc.encode(text)
|
218 |
+
self.tokens = torch.tensor(tokens, device=device) # Move tokens to the correct device
|
219 |
+
print(f'loaded {len(self.tokens)} tokens')
|
220 |
+
print(f'1 epoch = {len(self.tokens)} batches')
|
221 |
+
|
222 |
+
# state
|
223 |
+
self.current_position = 0
|
224 |
+
|
225 |
+
def next_batch(self):
|
226 |
+
B, T = self.B, self.T
|
227 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
228 |
+
x = (buf[:-1]).view(B, T) # inputs
|
229 |
+
y = (buf[1:]).view(B, T) # targets
|
230 |
+
# advance the position in the tensor
|
231 |
+
self.current_position += B*T
|
232 |
+
# if loading the next batch would be out of bounds, reset
|
233 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
234 |
+
self.current_position = 0
|
235 |
+
return x, y
|
236 |
+
|
237 |
+
|
238 |
+
import os
|
239 |
+
import time
|
240 |
+
import torch
|
241 |
+
|
242 |
+
# Initialize the model and data loader
|
243 |
+
config = GPTConfig()
|
244 |
+
model = GPT(config).to(device) # Move model to the correct device
|
245 |
+
|
246 |
+
# Print the model architecture and number of parameters
|
247 |
+
print(model)
|
248 |
+
model.print_num_parameters()
|
249 |
+
|
250 |
+
train_loader = DataLoaderLite(B=4, T=1024)
|
251 |
+
|
252 |
+
# Define the optimizer
|
253 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4)
|
254 |
+
|
255 |
+
# Function to load the most recent checkpoint
|
256 |
+
def load_latest_checkpoint(model):
|
257 |
+
checkpoint_file = 'checkpoint.pt'
|
258 |
+
if not os.path.exists(checkpoint_file):
|
259 |
+
return 0 # No checkpoint found, start from epoch 0
|
260 |
+
|
261 |
+
print(f'Loading checkpoint from {checkpoint_file}')
|
262 |
+
checkpoint = torch.load(checkpoint_file, map_location=device) # Load checkpoint to the correct device
|
263 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
264 |
+
return checkpoint['epoch']
|
265 |
+
|
266 |
+
# Load the latest checkpoint if available
|
267 |
+
start_epoch = load_latest_checkpoint(model)
|
268 |
+
|
269 |
+
# Training loop
|
270 |
+
num_epochs = 100
|
271 |
+
|
272 |
+
# Start time tracking
|
273 |
+
start_time = time.time()
|
274 |
+
|
275 |
+
for epoch in range(start_epoch, num_epochs): # Start from the loaded epoch
|
276 |
+
epoch_loss = 0.0 # Initialize epoch loss
|
277 |
+
num_steps = 0 # Initialize step counter for the epoch
|
278 |
+
last_loss = None # Variable to store the last loss
|
279 |
+
|
280 |
+
# Calculate total steps for the progress bar
|
281 |
+
total_steps = len(train_loader.tokens) // (train_loader.B * train_loader.T)
|
282 |
+
|
283 |
+
# Use tqdm to create a progress bar
|
284 |
+
with tqdm(total=total_steps, desc=f'Epoch {epoch + 1}/{num_epochs}') as pbar:
|
285 |
+
for step in range(total_steps): # Iterate over the number of steps
|
286 |
+
x, y = train_loader.next_batch()
|
287 |
+
x, y = x.to(device), y.to(device)
|
288 |
+
optimizer.zero_grad()
|
289 |
+
logits, loss = model(x, y)
|
290 |
+
loss.backward()
|
291 |
+
optimizer.step()
|
292 |
+
|
293 |
+
epoch_loss += loss.item() # Accumulate loss
|
294 |
+
num_steps += 1 # Increment step counter
|
295 |
+
last_loss = loss.item() # Store the last loss
|
296 |
+
pbar.update(1) # Update progress bar
|
297 |
+
|
298 |
+
# Check if the loss is below the threshold
|
299 |
+
if last_loss < 0.099999:
|
300 |
+
print(f'Loss below threshold: {last_loss:.6f}') # Print loss before breaking
|
301 |
+
break # Exit the loop if the loss condition is met
|
302 |
+
|
303 |
+
# Print the loss at the end of the epoch
|
304 |
+
print(f'Epoch {epoch + 1}/{num_epochs}, Loss: {last_loss:.6f}')
|
305 |
+
|
306 |
+
# Check if the loss condition was met to break out of the epoch loop
|
307 |
+
if last_loss < 0.099999:
|
308 |
+
print(f'Early stopping at epoch {epoch + 1} due to loss condition met.')
|
309 |
+
break # Exit the epoch loop if the loss condition is met
|
310 |
+
|
311 |
+
# Checkpointing: Save the model and the current epoch after each epoch
|
312 |
+
checkpoint_path = 'checkpoint.pt' # Save to a single checkpoint file
|
313 |
+
torch.save({
|
314 |
+
'epoch': epoch + 1, # Save the current epoch number
|
315 |
+
'model_state_dict': model.state_dict(), # Save the model state
|
316 |
+
}, checkpoint_path)
|
317 |
+
|
318 |
+
# End time tracking
|
319 |
+
end_time = time.time()
|
320 |
+
training_duration = end_time - start_time
|
321 |
+
|
322 |
+
# Convert training duration to minutes and seconds
|
323 |
+
minutes = int(training_duration // 60)
|
324 |
+
seconds = int(training_duration % 60)
|
325 |
+
|
326 |
+
# Print the total training time in minute:second format
|
327 |
+
print(f'Total training time: {minutes} minutes and {seconds} seconds')
|
328 |
+
|
329 |
+
# After training your model, apply quantization and save it with compression
|
330 |
+
def save_model_with_quantization(model, file_path):
|
331 |
+
# Switch model to evaluation mode
|
332 |
+
model.eval()
|
333 |
+
|
334 |
+
# Apply dynamic quantization
|
335 |
+
quantized_model = torch.quantization.quantize_dynamic(
|
336 |
+
model, # the model to be quantized
|
337 |
+
{nn.Linear}, # layers to quantize
|
338 |
+
dtype=torch.qint8 # quantization type
|
339 |
+
)
|
340 |
+
|
341 |
+
# Save the quantized model with compression
|
342 |
+
torch.save(quantized_model.state_dict(), file_path, _use_new_zipfile_serialization=True)
|
343 |
+
print(f'Model saved to {file_path} with quantization and compression.')
|
344 |
+
|
345 |
+
# Call this function after training your model
|
346 |
+
save_model_with_quantization(model, 'trained_model_quantized.pt')
|
trained_model_quantized.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3d71eeb703354e72af3b0205521e19e34d59fbc166bada1c5136a95fac0881e
|
3 |
+
size 548146590
|
training_logs.txt
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GPT(
|
2 |
+
(transformer): ModuleDict(
|
3 |
+
(wte): Embedding(50257, 768)
|
4 |
+
(wpe): Embedding(1024, 768)
|
5 |
+
(h): ModuleList(
|
6 |
+
(0-11): 12 x Block(
|
7 |
+
(ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
8 |
+
(attn): CausalSelfAttention(
|
9 |
+
(c_attn): Linear(in_features=768, out_features=2304, bias=True)
|
10 |
+
(c_proj): Linear(in_features=768, out_features=768, bias=True)
|
11 |
+
)
|
12 |
+
(ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
13 |
+
(mlp): MLP(
|
14 |
+
(c_fc): Linear(in_features=768, out_features=3072, bias=True)
|
15 |
+
(gelu): GELU(approximate='tanh')
|
16 |
+
(c_proj): Linear(in_features=3072, out_features=768, bias=True)
|
17 |
+
)
|
18 |
+
)
|
19 |
+
)
|
20 |
+
(ln_f): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
21 |
+
)
|
22 |
+
(lm_head): Linear(in_features=768, out_features=50257, bias=False)
|
23 |
+
)
|
24 |
+
Number of model parameters: 124439808
|
25 |
+
loaded 338025 tokens
|
26 |
+
1 epoch = 338025 batches
|
27 |
+
Epoch 1/100: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:02<00:00, 1.49s/it]
|
28 |
+
Epoch 1/100, Loss: 6.169586
|
29 |
+
Epoch 2/100: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.46s/it]
|
30 |
+
Epoch 2/100, Loss: 5.725876
|
31 |
+
Epoch 3/100: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.45s/it]
|
32 |
+
Epoch 3/100, Loss: 5.388371
|
33 |
+
Epoch 4/100: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.46s/it]
|
34 |
+
Epoch 4/100, Loss: 5.157932
|
35 |
+
Epoch 5/100: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
36 |
+
Epoch 5/100, Loss: 5.061885
|
37 |
+
Epoch 6/100: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
38 |
+
Epoch 6/100, Loss: 4.935056
|
39 |
+
Epoch 7/100: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
40 |
+
Epoch 7/100, Loss: 4.885263
|
41 |
+
Epoch 8/100: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
42 |
+
Epoch 8/100, Loss: 4.809940
|
43 |
+
Epoch 9/100: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
44 |
+
Epoch 9/100, Loss: 4.735846
|
45 |
+
Epoch 10/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
46 |
+
Epoch 10/100, Loss: 4.645680
|
47 |
+
Epoch 11/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.46s/it]
|
48 |
+
Epoch 11/100, Loss: 4.618394
|
49 |
+
Epoch 12/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.46s/it]
|
50 |
+
Epoch 12/100, Loss: 4.696181
|
51 |
+
Epoch 13/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.46s/it]
|
52 |
+
Epoch 13/100, Loss: 4.652514
|
53 |
+
Epoch 14/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
54 |
+
Epoch 14/100, Loss: 4.544122
|
55 |
+
Epoch 15/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
56 |
+
Epoch 15/100, Loss: 4.434405
|
57 |
+
Epoch 16/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.46s/it]
|
58 |
+
Epoch 16/100, Loss: 4.351640
|
59 |
+
Epoch 17/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.46s/it]
|
60 |
+
Epoch 17/100, Loss: 4.302667
|
61 |
+
Epoch 18/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
62 |
+
Epoch 18/100, Loss: 4.250755
|
63 |
+
Epoch 19/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
64 |
+
Epoch 19/100, Loss: 4.240822
|
65 |
+
Epoch 20/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
66 |
+
Epoch 20/100, Loss: 4.140355
|
67 |
+
Epoch 21/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
68 |
+
Epoch 21/100, Loss: 4.108179
|
69 |
+
Epoch 22/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.47s/it]
|
70 |
+
Epoch 22/100, Loss: 4.041890
|
71 |
+
Epoch 23/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:58<00:00, 1.44s/it]
|
72 |
+
Epoch 23/100, Loss: 3.963832
|
73 |
+
Epoch 24/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.45s/it]
|
74 |
+
Epoch 24/100, Loss: 3.892056
|
75 |
+
Epoch 25/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.45s/it]
|
76 |
+
Epoch 25/100, Loss: 3.808795
|
77 |
+
Epoch 26/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.45s/it]
|
78 |
+
Epoch 26/100, Loss: 3.751796
|
79 |
+
Epoch 27/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
80 |
+
Epoch 27/100, Loss: 3.717071
|
81 |
+
Epoch 28/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.47s/it]
|
82 |
+
Epoch 28/100, Loss: 3.623077
|
83 |
+
Epoch 29/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.46s/it]
|
84 |
+
Epoch 29/100, Loss: 3.523796
|
85 |
+
Epoch 30/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:01<00:00, 1.48s/it]
|
86 |
+
Epoch 30/100, Loss: 3.517564
|
87 |
+
Epoch 31/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.47s/it]
|
88 |
+
Epoch 31/100, Loss: 3.480751
|
89 |
+
Epoch 32/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:01<00:00, 1.48s/it]
|
90 |
+
Epoch 32/100, Loss: 3.350459
|
91 |
+
Epoch 33/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.47s/it]
|
92 |
+
Epoch 33/100, Loss: 3.246453
|
93 |
+
Epoch 34/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:02<00:00, 1.50s/it]
|
94 |
+
Epoch 34/100, Loss: 3.188673
|
95 |
+
Epoch 35/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.48s/it]
|
96 |
+
Epoch 35/100, Loss: 3.084938
|
97 |
+
Epoch 36/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.47s/it]
|
98 |
+
Epoch 36/100, Loss: 3.066993
|
99 |
+
Epoch 37/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:02<00:00, 1.50s/it]
|
100 |
+
Epoch 37/100, Loss: 3.061435
|
101 |
+
Epoch 38/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:01<00:00, 1.48s/it]
|
102 |
+
Epoch 38/100, Loss: 2.970392
|
103 |
+
Epoch 39/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:01<00:00, 1.48s/it]
|
104 |
+
Epoch 39/100, Loss: 2.929441
|
105 |
+
Epoch 40/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:01<00:00, 1.48s/it]
|
106 |
+
Epoch 40/100, Loss: 2.859148
|
107 |
+
Epoch 41/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:01<00:00, 1.48s/it]
|
108 |
+
Epoch 41/100, Loss: 2.720443
|
109 |
+
Epoch 42/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:01<00:00, 1.48s/it]
|
110 |
+
Epoch 42/100, Loss: 2.677000
|
111 |
+
Epoch 43/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:01<00:00, 1.48s/it]
|
112 |
+
Epoch 43/100, Loss: 2.686754
|
113 |
+
Epoch 44/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:01<00:00, 1.49s/it]
|
114 |
+
Epoch 44/100, Loss: 2.587105
|
115 |
+
Epoch 45/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:01<00:00, 1.48s/it]
|
116 |
+
Epoch 45/100, Loss: 2.580384
|
117 |
+
Epoch 46/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:01<00:00, 1.48s/it]
|
118 |
+
Epoch 46/100, Loss: 2.470110
|
119 |
+
Epoch 47/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:01<00:00, 1.48s/it]
|
120 |
+
Epoch 47/100, Loss: 2.427342
|
121 |
+
Epoch 48/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:01<00:00, 1.48s/it]
|
122 |
+
Epoch 48/100, Loss: 2.373981
|
123 |
+
Epoch 49/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.47s/it]
|
124 |
+
Epoch 49/100, Loss: 2.296330
|
125 |
+
Epoch 50/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:01<00:00, 1.48s/it]
|
126 |
+
Epoch 50/100, Loss: 2.265591
|
127 |
+
Epoch 51/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.47s/it]
|
128 |
+
Epoch 51/100, Loss: 2.192356
|
129 |
+
Epoch 52/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.46s/it]
|
130 |
+
Epoch 52/100, Loss: 2.198070
|
131 |
+
Epoch 53/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:02<00:00, 1.49s/it]
|
132 |
+
Epoch 53/100, Loss: 2.188312
|
133 |
+
Epoch 54/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.46s/it]
|
134 |
+
Epoch 54/100, Loss: 2.135185
|
135 |
+
Epoch 55/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:02<00:00, 1.49s/it]
|
136 |
+
Epoch 55/100, Loss: 2.078190
|
137 |
+
Epoch 56/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:01<00:00, 1.48s/it]
|
138 |
+
Epoch 56/100, Loss: 2.006707
|
139 |
+
Epoch 57/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.48s/it]
|
140 |
+
Epoch 57/100, Loss: 1.948682
|
141 |
+
Epoch 58/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:01<00:00, 1.48s/it]
|
142 |
+
Epoch 58/100, Loss: 1.881101
|
143 |
+
Epoch 59/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.47s/it]
|
144 |
+
Epoch 59/100, Loss: 1.855351
|
145 |
+
Epoch 60/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.47s/it]
|
146 |
+
Epoch 60/100, Loss: 1.803647
|
147 |
+
Epoch 61/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:01<00:00, 1.48s/it]
|
148 |
+
Epoch 61/100, Loss: 1.769509
|
149 |
+
Epoch 62/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.47s/it]
|
150 |
+
Epoch 62/100, Loss: 1.690739
|
151 |
+
Epoch 63/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.45s/it]
|
152 |
+
Epoch 63/100, Loss: 1.617859
|
153 |
+
Epoch 64/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:58<00:00, 1.45s/it]
|
154 |
+
Epoch 64/100, Loss: 1.587296
|
155 |
+
Epoch 65/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.45s/it]
|
156 |
+
Epoch 65/100, Loss: 1.497325
|
157 |
+
Epoch 66/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.45s/it]
|
158 |
+
Epoch 66/100, Loss: 1.504886
|
159 |
+
Epoch 67/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.45s/it]
|
160 |
+
Epoch 67/100, Loss: 1.472629
|
161 |
+
Epoch 68/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:58<00:00, 1.45s/it]
|
162 |
+
Epoch 68/100, Loss: 1.411465
|
163 |
+
Epoch 69/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
164 |
+
Epoch 69/100, Loss: 1.298898
|
165 |
+
Epoch 70/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
166 |
+
Epoch 70/100, Loss: 1.307322
|
167 |
+
Epoch 71/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.47s/it]
|
168 |
+
Epoch 71/100, Loss: 1.285789
|
169 |
+
Epoch 72/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
170 |
+
Epoch 72/100, Loss: 1.218164
|
171 |
+
Epoch 73/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.46s/it]
|
172 |
+
Epoch 73/100, Loss: 1.213857
|
173 |
+
Epoch 74/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.46s/it]
|
174 |
+
Epoch 74/100, Loss: 1.178053
|
175 |
+
Epoch 75/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.47s/it]
|
176 |
+
Epoch 75/100, Loss: 1.090234
|
177 |
+
Epoch 76/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.47s/it]
|
178 |
+
Epoch 76/100, Loss: 1.161356
|
179 |
+
Epoch 77/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
180 |
+
Epoch 77/100, Loss: 1.029426
|
181 |
+
Epoch 78/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
182 |
+
Epoch 78/100, Loss: 1.031992
|
183 |
+
Epoch 79/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.45s/it]
|
184 |
+
Epoch 79/100, Loss: 0.926385
|
185 |
+
Epoch 80/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
186 |
+
Epoch 80/100, Loss: 0.859884
|
187 |
+
Epoch 81/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
188 |
+
Epoch 81/100, Loss: 0.765925
|
189 |
+
Epoch 82/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.45s/it]
|
190 |
+
Epoch 82/100, Loss: 0.717372
|
191 |
+
Epoch 83/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.45s/it]
|
192 |
+
Epoch 83/100, Loss: 0.658353
|
193 |
+
Epoch 84/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:58<00:00, 1.45s/it]
|
194 |
+
Epoch 84/100, Loss: 0.617299
|
195 |
+
Epoch 85/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:58<00:00, 1.44s/it]
|
196 |
+
Epoch 85/100, Loss: 0.583582
|
197 |
+
Epoch 86/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:58<00:00, 1.44s/it]
|
198 |
+
Epoch 86/100, Loss: 0.564416
|
199 |
+
Epoch 87/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.45s/it]
|
200 |
+
Epoch 87/100, Loss: 0.565063
|
201 |
+
Epoch 88/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
202 |
+
Epoch 88/100, Loss: 0.529434
|
203 |
+
Epoch 89/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
204 |
+
Epoch 89/100, Loss: 0.462530
|
205 |
+
Epoch 90/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.45s/it]
|
206 |
+
Epoch 90/100, Loss: 0.472604
|
207 |
+
Epoch 91/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.47s/it]
|
208 |
+
Epoch 91/100, Loss: 0.359616
|
209 |
+
Epoch 92/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
210 |
+
Epoch 92/100, Loss: 0.327887
|
211 |
+
Epoch 93/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.45s/it]
|
212 |
+
Epoch 93/100, Loss: 0.255940
|
213 |
+
Epoch 94/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
214 |
+
Epoch 94/100, Loss: 0.250542
|
215 |
+
Epoch 95/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
216 |
+
Epoch 95/100, Loss: 0.234167
|
217 |
+
Epoch 96/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.46s/it]
|
218 |
+
Epoch 96/100, Loss: 0.230048
|
219 |
+
Epoch 97/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.47s/it]
|
220 |
+
Epoch 97/100, Loss: 0.198586
|
221 |
+
Epoch 98/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [02:00<00:00, 1.46s/it]
|
222 |
+
Epoch 98/100, Loss: 0.168263
|
223 |
+
Epoch 99/100: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 82/82 [01:59<00:00, 1.46s/it]
|
224 |
+
Epoch 99/100, Loss: 0.147011
|
225 |
+
Epoch 100/100: 46%|ββββββββββββββββββββββββββββββββββββββββββββββββ | 38/82 [00:55<01:04, 1.46s/it]Loss below threshold: 0.098271
|
226 |
+
Epoch 100/100: 46%|ββββββββββββββββββββββββββββββββββββββββββββββββ | 38/82 [00:55<01:03, 1.45s/it]
|
227 |
+
Epoch 100/100, Loss: 0.098271
|
228 |
+
Early stopping at epoch 100 due to loss condition met.
|
229 |
+
Total training time: 200 minutes and 11 seconds
|